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ABSTRACT
Iris recognition applies pattern matching techniques to com-
pare two iris images and retrieve a comparison score that
reflects their degree of (dis-)similarity. While numerous ap-
proaches to generating iris-codes have been proposed for
the relatively young discipline of automated iris recognition,
there are only few, usually simple, comparison techniques,
e.g. fractional Hamming distance. However, in case of hav-
ing access to specific iris-codes only or black-boxed feature
extraction, there may be situations where improved compar-
ison (even at potentially higher processing cost) is desirable.
In this paper we present a new strategy for comparing iris-
codes, which utilizes variations within comparison scores at
different shift positions. We demonstrate that by taking ad-
vantage of this information, which even comes at negligible
cost, recognition performance is significantly improved. The
soundness of the approach is confirmed by experiments using
two different iris-code based feature extraction algorithms.

Categories and Subject Descriptors
B.m [Miscellaneous]: Biometrics; I.4 [Image Processing
and Computer Vision]: Applications

General Terms
Algorithms, Performance, Verification, Security
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1. INTRODUCTION
The human iris has a unique pattern, from eye to eye and

person to person. In the past years iris recognition [1] has
emerged as a reliable means of recognizing individuals. Ap-
plications include identity cards and passports, border con-
trol or controlling access to restricted areas, to mention just
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Figure 1: Template alignment in iris recognition:
circular bit shifting is applied to align iris-codes and
the minimum HD is returned as comparison score.

a few [9]. Daugman’s standard approach [2], unwrapping
the “iris ring” of a data subject in order to analyze a rectan-
gular iris texture has proven worth. Throughout the years
several different feature extraction methods have been pro-
posed where the vast majority of approaches extract binary
iris-codes out of these textures (see [1]) such that similarity
between iris-codes is defined applying the fractional Ham-
ming distance (HD) as metric (small HDs indicate high sim-
ilarity). That is, fast comparison, which is essential in case of
large scale databases, is provided while template alignment
is performed within a single dimension, applying a circular
shift of iris-codes, in order to compensate against head tilts
of a certain degree. In Fig. 1 the procedure of aligning
two iris-codes during comparison is illustrated. That is, the
similarity between two iris-codes is estimated at numerous
shift positions and the comparison score at an optimal align-
ment is returned. Common iris recognition systems (we do
not consider feature extraction methods which generate real-
valued feature vectors) are based on this operation mode [1]
providing a fast and simple method to authenticate individ-
uals.

While most publications regarding iris recognition aim at
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Figure 2: Proposed Comparison: the basic operation mode of the proposed comparison strategy.

extracting discriminative iris-codes during feature extraction
comparison techniques have received only little considera-
tion. Besides conventional bit-masking techniques, which
are designed to detect occlusions originating from eye lids or
eye lashes, Hollingsworth et al. [5] have proposed a method
to detect iris-code bits which underlie high variations. By
masking out these “fragile bits” during matching recognition
performance is increased. Recently, Rathgeb and Uhl [8]
have demonstrated that a context-based comparison of bi-
nary iris-codes increases recognition rates as well. Within
this approach iris-codes are arranged in a two-dimensional
manner in order to detect clusters of matching as well as
non-matching bits. Based on the idea that large connected
matching parts of iris-codes indicate genuine samples and
non-genuine samples tend to cause more randomized distor-
tions according context-based match scores are extracted.
However, more complex approaches to template comparison
generally require additional effort and are not suitable for
biometric identification systems. To obtain representative
user-specific iris templates during enrollment Davida et al.
[3] and Ziauddin and Dailey [10] analyze several iris-codes.
While Davida et al. propose a majority decoding where
the majority of bits is assigned to according bit positions,
Ziauddin and Dailey suggest to assign weights to each bit
position which are afterwards applied during comparison.
Obviously applying more than one enrollment sample yields
better recognition performance [4], however, commercial ap-
plications usually require single sample enrollment.

The contribution of this work is the proposal of an iris-
code comparison technique which exploits variations of com-
parison scores of iris-codes at different shift positions. Based
on the idea that comparison scores (HDs) of genuine data
subjects exhibit higher variations with respect to different

shift positions than those of non-genuine data subjects, the
information of shifting variation is leveraged. That is, for
genuine pairs of iris-codes a distinct shifting position reveals
an optimal comparison score while iris-codes of different data
subjects tend to exhibit equally low similarity scores across
different alignments. This claim is justified through the fact
that unaligned iris-codes of a single data subject appear al-
most random to each other while iris-codes of different data
subjects should appear random to each other per se, regard-
less of shifting positions. In experiments we demonstrate
that the proposed comparison, which except from tracking
the worst HD comparison and computing a final score sum
of best and worst HD does not require additional computa-
tional cost, improves the recognition performance of differ-
ent iris recognition algorithms.

This paper is organized as follows: Sect. 2 introduces the
proposed comparison strategy and establishes a connection
to score sum fusion techniques. In Sect. 3 experimental
setup is summarized. Evaluations are presented in Sect. 4
and Sect. 5 concludes this work.

2. SHIFTING VARIATION IN IRIS
VERIFICATION

As outlined in Fig. 2 the main focus of our approach is
put on a modification of the comparison stage. In tradi-
tional iris comparison [1], in order to obtain a comparison
score indicating the (dis-)similarity between two iris-codes,
the minimum fractional HD over different bit shifts is cal-
culated. The main reason for shifting one of the two paired
iris-codes is to obtain a perfect alignment, i.e. to tolerate a
certain amount of relative rotation between the two iris tex-
tures. Since iris-codes are composed of localized features,
bit shifts in an iris-code correspond to angular shifts of the



underlying iris texture. It is a very natural approach to
preserve the best match only, i.e. the minimum HD value
over different shifts, because this value most likely corre-
sponds to the best alignment of two codes. The impact
of bit shifts on inter-class comparisons has been shown to
just skew the distribution to the left and reduce its mean
[2]. However, there is no evidence, that the other computed
HD scores of less perfect alignments can not contribute to
an even better recognition result. While other traditional
combination rules, such as maximum, product or sum of
HD scores at different bit positions did not improve overall
recognition accuracy in our experiments, it is interesting to
look at the shifting variation, i.e. difference between maxi-
mum and minimum obtained HD scores. Let s(a, i) denote
an iris-code a shifted by i ∈ In = {z ∈ Z : |z| ≤ n} bits and
HD(a, b) be the Hamming distance of two iris-codes, then
we define the shifting variation (SV ) score for two iris-codes
a, b as:

SV (a, b) = max
i∈In

(
HD

(
a, s(b, i)

))
−min

i∈In

(
HD

(
a, s(b, i)

))
.

(1)
Since multiplication and addition with constant values does
not alter the ROC behavior of SV scores (denoted here with
an equivalence relation ≈), we perform the following modi-
fications to illustrate an interesting connection between SV
and sum rule fusion:

SV (a, b) ≈ min
i∈In

(
HD

(
a, s(b, i)

))
−max

i∈In

(
HD

(
a, s(b, i)

))
≈ 1−max
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))
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(
HD

(
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≈ 1

2

((
1−max

i∈In

(
HD(a, s(b, i))

))
+min

i∈In

(
HD

(
a, s(b, i)

)))
.

(2)
That is, shifting variation corresponds to a score level fu-
sion of the minimum (i.e. best) Hamming distance and one
minus the maximum (i.e. worst) Hamming distance using
the sum rule [6]. By combining “best” and “worst” observed
HD scores we also track the variation between these scores,
which we will show to be a good indicator for genuine and
imposter classes (SV scores tend to be higher for intra-class
comparisons than for inter-class comparisons). In order to
obtain distance scores comparable to minimum HD we use
the latter reformulated term using sum rule fusion:

SSF (a, b) =
1

2

((
1−max

i∈In

(
HD(a, s(b, i))

))
+

min
i∈In

(
HD

(
a, s(b, i)

)))
. (3)

From this point of view, the proposed approach is a new
shifting score fusion (SSF) technique for iris recognition.

In Sect. 4, we will illustrate that SSF is superior to tradi-
tional approaches assessing the minimum Hamming distance
only. Furthermore the improvement comes at almost no ad-
ditional cost, since a calculation of the minimum Hamming
distance already involves a calculation of all Hamming dis-
tances in a specified range In. The only required additional
operation is a tracking of the maximum observed HD (be-
sides the minimum HD) and an application of the fusion rule
outlined before.

3. EXPERIMENTAL SETUP
For experiments we employ the CASIA-V3-Interval1 iris

database consisting of good quality NIR illuminated indoor
images with 320×280 pixel resolution. An example of input
and processed textures is illustrated as part of Fig. 1. For
experiments, we considered left-eye images only yielding a
total of 1307 out of 2655 instances.

In the preprocessing step, the pupil and iris of a given
sample are detected by applying Canny edge detection and
Hough circle detection. After localizing the pupil and iris
circles, the area between them is transformed to a normal-
ized rectangular texture of 512× 64 pixel, according to the
“rubbersheet” approach by Daugman. As a final step, illu-
mination across the texture is normalized using blockwise
brightness estimation.

In the feature extraction stage, we employ custom imple-
mentations of two different algorithms extracting binary iris-
codes. The first one was proposed by Ma et al. [7]. Within
this approach the texture is divided into stripes to obtain
10 one-dimensional signals, each one averaged from the pix-
els of 5 adjacent rows (the upper 512 × 50 are analyzed).
A dyadic wavelet transform is then performed on each of
the resulting 10 signals, and two fixed subbands are selected
from each transform resulting in a total number of 20 sub-
bands. In each subband all local minima and maxima above
an adequate threshold are located, and a bitcode alternating
between 0 and 1 at each extreme point is extracted. Using
512 bits per signal, the final code is then 512× 20 = 10240
bit. The second feature extraction method follows an imple-
mentation by Masek2 in which filters obtained from a Log-
Gabor function are applied. Here, a row-wise convolution
with a complex Log-Gabor filter is performed on the tex-
ture pixels. The phase angle of the resulting complex value
for each pixel is discretized into 2 bits. Again, row-averaging
is applied to obtain 10 signals of length 512, where 2 bits of
phase information are used to generate a binary code, con-
sisting of 512× 20 = 10240 bit. The algorithm is somewhat
similar to Daugman’s use of Log-Gabor filters, but it works
only on rows as opposed to the 2-dimensional filters used by
Daugman.

With respect to different comparison techniques the recog-
nition performance of the previously described algorithms,
is carried out in terms of equal error rates (EERs) and zero
false match rates (ZeroFMRs). For both feature extraction
methods we evaluate three different similarity metrices: (1)
MinHD : the minimum Hamming distance, (2) 1-MaxHD :
one minus the maximum Hamming distance, and (3) SSF :
the proposed shifting score fusion, where we perform circular
shifts of up to seven bits in both directions. All experiments
were executed in verification mode with 4028 genuine com-
parisons (intra-class cross-comparison) and 15576 imposter
comparisons (comparing only the first template of each data
subject against each other).

4. EXPERIMENTAL RESULTS
The EERs and ZeroFMRs obtained by applying the ac-

cording comparison techniques for the algorithms of Ma and

1The Center of Biometrics and Security Research, CASIA
Iris Image Database, http://www.sinobiometrics.com
2L. Masek: Recognition of Human Iris Patterns for Bio-
metric Identification, Master’s thesis, University of Western
Australia, 2003
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Figure 3: ROC curves for presented comparison
techniques on Ma’s feature vector.
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Figure 4: ROC curves for presented comparison
techniques on Masek’s feature vector.

Masek are summarized in Table 1 and Table 2, respectively.
The resulting receiver operation characteristics (ROCs) are
plotted in Fig. 3 and Fig. 4. As can be seen, for both feature
extraction methods, SSF reveals a slightly better perfor-
mance over MinHD when evaluating EERs while 1-MaxHD
shows rather unpractical rates (e.g. 16.4% for the algorithm
of Masek). It is interesting to see, that despite this weak
performance of 1-MaxHD, still the measured scores can well
be combined with MinHD to even improve the total com-
bined score. Even more surprisingly, MaxHD has an inverse
similarity comparison property, i.e. if the maximum HD
between two samples is very high, they are likely to be a
genuine comparison pair - as opposed to MinHD where ex-
actly the opposite is true. This suggests, that for iris-codes
originating from the same data subject, there are misalign-
ments inducing some kind of systematic error - unseen for
HD comparisons with iris-codes from different data subjects.

Table 1: EER rates (in percent) of presented com-
parison techniques

EER MinHD 1-MaxHD SSF

Ma 0.89 2.00 0.80
Masek 1.29 16.40 1.07
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Figure 5: Genuine and imposter score distribution
for SSF using Ma’s feature vector.
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Figure 6: Genuine and imposter score distribution
for SSF using Masek’s feature vector.

With respect to ZeroFMR, performance gains become even
more clearly visible (see Table 2). For the algorithms of Ma
and Masek the ZeroFMR is decreased from 4.87% to 1.94%
and from 10.87% to 3.97%, respectively. The according
intra-class and inter-class distributions for SSF are plotted
in Fig. 5 and Fig. 6. That is, the SSF comparison technique
is capable of reducing the ZeroFMRs to a level twice as low
compared to MinHD which underlines the worthiness of the
approach since low ZeroFMRs are generally demanded, in
particular, for high security applications. Together with the
property of easy integration in existing comparators (only 4
lines of code needed to be changed in our implementation to
switch from MinHD to SSF ) and almost no additional time
requirements (time differences were too small to be mea-
sured in our experiments) the proposed technique would be
an ideal enhancement of current MinHD-based implementa-
tions.

Table 2: ZeroFMR rates (in percent) of presented
comparison techniques

ZeroFMR MinHD 1-MaxHD SSF

Ma 4.87 7.52 1.94
Masek 10.87 91.48 3.97
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Figure 7: 1-Max(HD) scores vs. Min(HD) scores for
7 shifts using Ma’s feature vector.
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Figure 8: 1-Max(HD) scores vs. Min(HD) scores for
7 shifts using Masek’s feature vector.

In Fig. 7 and Fig. 8 for both algorithms the inter-relation
between MinHD and 1-MaxHD is shown. It is interesting
to see, that for both Ma and Masek the intra-class vari-
ance is rather low, i.e. there is not much difference between
minimum and (one minus) maximum Hamming distance.
Furthermore, we can identify a much better separability of
genuine and imposter score points by lines parallel to y = −x
than lines parallel to x-axis or y-axis. Finally, there is no
strong correlation between both scores, indicating a promis-
ing fusion.

5. CONCLUSION AND FUTURE WORK
The rich texture of an iris offers a strong biometric cue for

recognizing individuals [9]. While most approaches to iris
recognition systems put their main focus on the feature ex-
traction stage, improving comparison strategies has received
only little consideration. Applying the fractional Hamming
distance to estimate the similarity between two binary iris-
codes has proven worth with respect to accuracy and speed,
while template alignment is implemented through circular
bit shifts.

In this work we investigated the variation of comparison
scores between iris-codes at different shifting positions to
propose a new comparison technique. We demonstated that

by taking into account the variation of comparison scores
at several shifting positions (which comes at negligible cost)
recognition rates of different iris recognition algorithms can
be significantly increased. Since pairs of iris-codes from the
same data subject exhibit an optimal comparison score at a
distinct alignment, mis-alignments reveal rather low com-
parison scores causing high variation. In contrast, pairs
of non-genuine data subjects tend to yield low comparison
scores regardless of shifting positions. These observations
motivate a sensible fusion of comparision scores and shift-
ing variation. While the simplicity of the proposed scheme
preserves resources, the resulting increased recognition rates
confirm the soundness of the proposed technique.

Future work will comprise performance evaluations of the
proposed comparison procedure in iris biometric fusion sce-
narios.
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