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Abstract

Fuzzy commitment schemes have been established as a
reliable means of binding cryptographic keys to binary fea-
ture vectors extracted from diverse biometric modalities. In
addition, attempts have been made to extend fuzzy commit-
ment schemes to incorporate multiple biometric feature vec-
tors. Within these schemes potential improvements through
feature level fusion are commonly neglected.

In this paper a feature level fusion technique for fuzzy
commitment schemes is presented. The proposed reliability-
balanced feature level fusion is designed to re-arrange
and combine two binary biometric templates in a way that
error correction capacities are exploited more effectively
within a fuzzy commitment scheme yielding improvement
with respect to key-retrieval rates. In experiments, which
are carried out on iris-biometric data, reliability-balanced
feature level fusion significantly outperforms conventional
approaches to multi-biometric fuzzy commitment schemes
confirming the soundness of the proposed technique.

1. Introduction
Biometric cryptosystems are designed to securely bind a

digital key to a biometric or generate a digital key from a
biometric [3], offering solutions to secure biometric-based
key management as well as biometric template protection.
The fuzzy commitment scheme (FCS) [6] represents one
of the most popular template protection schemes and has
been applied to several biometric modalities. In FCSs keys
prepared with error correction information are bound to bi-
nary biometric feature vectors, i.e. biometric variance is
overcome by means of error correction. While different
applications of error correction have been proposed (e.g.
in [4, 2]) perfect error correction codes for desired code
lengths have remained elusive. In addition, attempts have
been made to adapt binary biometric feature vectors in or-
der to provide a more efficient error correction decoding
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Figure 1. Basic operation mode of the proposed reliability-
balanced FLF for FCS.

(e.g. in [2, 14]), yielding improved key-retrieval rates. In
addition, multi-biometric FCSs have been proposed (e.g. in
[17, 8]) in which different feature vectors are utilized at
key-binding. However, so far feature level fusion (FLF)
approaches within multi-biometric FCSs has been imple-
mented by simple concatenations of biometric templates
neglecting potential performance improvements resulting
from a sensible re-arrangement of binary feature vectors.

In this paper a FLF for FCSs is presented. Emphasis is
put on the reliability, i.e. stability and driscriminativity, of
single bits in biometric feature vectors. Based on a per-
algorithm analysis of reliability distributions within feature
vectors obtained from a small training set, FLF function W
transforms two given biometric templates x1 and x2 into
one template x, x = W (x1, x2). The proposed approach,
which is illustrated in Fig. 1, is designed to balance bit
reliability of according chunks of the entire fused template
at a maximum reachable level. Thereby, a more efficient er-
ror correction decoding within a FCS is achieved yielding
improved key-retrieval rates. The generic reliability-based
FLF is evaluated on iris biometric data employing two dif-
ferent feature extraction algorithms inappropriate for bio-
metric fusion at score level. In experiments the proposed
FLF yields a significant performance improvement, com-
pared to existing methods.

The remainder of this paper is organized as follows: in
Section 2 related work regarding (multi-biometric) FCSs is



reviewed. Subsequently, the proposed FLF is described in

detail in Section 3. Section 4 presents experiments employ-

ing an iris-biometric database. Finally, a conclusion is given

in Section 5 .

2. Previous Work

In 1999, Juels and Wattenberg [6] proposed the FCS, a

bit commitment scheme resilient to noise. A FCS is for-

mally defined as a function F , applied to commit a code-

word c ∈ C with a witness x ∈ {0, 1}n where C is a set

of error correcting codewords of length n. The witness x
represents a binary biometric feature vector which can be

uniquely expressed in terms of the codeword c along with

an offset δ ∈ {0, 1}n, where δ = x − c. Given a biomet-

ric feature vector x expressed in this way, c is concealed

applying a conventional hash function (e.g. SHA-3), while

leaving δ as it is. The stored helper data is defined as,

F (c, x) =
(

h(x), x− c
)

. (1)

In order to achieve resilience to small corruptions in x,

any x′ sufficiently “close” to x according to an appropriate

metric (e.g. Hamming distance), should be able to recon-

struct c using the difference vector δ to translate x′ in the

direction of x. In case ‖x − x′‖ ≤ t, where t is a defined

threshold lower bounded by the according error correction

capacity, x′ yields a successful decommitment of F (c, x)
for any c. Otherwise, h(c) 6= h(c′) for the decoded code-

word c′ and a failure message is returned. In Fig. 2 the basic

operation mode of the FCS is illustrated.

Key approaches to FCSs with respect to applied biomet-

ric modalities, performance rates in terms of false rejection

rate (FRR) and false acceptance rate (FAR), extracted key

sizes, and applied data sets are summarized in Table 2. The

FCS was applied to iris-codes by Hao et al. [4]. In their

scheme 2048-bit iris-codes are applied to bind and retrieve

140-bit cryptographic keys prepared with Hadamard and

Reed-Solomon error correction codes. Hadamard codes are

applied to eliminate bit errors originating from the natural

biometric variance and Reed-Solomon codes are applied to

correct burst errors resulting from distortions. In order to

provide an error correction decoding in an iris-based FCS,

which gets close to a theoretical bound, two-dimensional

iterative min-sum decoding is introduced in [2]. A matrix

formed by two different binary Reed-Muller codes enables

a more efficient decoding, in addition, it was found that a

random permutation of iris-code bits improves recognition

rates due to a more uniform distribution of error occurrence.

In [13], a systematic approach to the construction of iris-

based FCS is presented. Different techniques to improve the

accuracy of iris-based FCSs have been proposed in [19, 14].

In [18] a randomized dynamic quantization transforma-

tion is applied to binarize fingerprint features extracted from

a multichannel Gabor filter. Subsequently, Reed-Solomon

codes are applied to construct the FCS incorporating a non-

invertible projection based on a user-specific token. A sim-

ilar FCS based on face features is presented in [1]. In [11]

a binary fixed-length minutiae representation obtained by

quantizing the Fourier phase spectrum of a minutia set is

applied in a FCS where alignment is achieved through focal

points of high curvature regions. In [10] a FCS for on-line

signatures is presented.

Several approaches have been proposed to extend bio-

metric cryptosystem to incorporate multiple biometric char-

acteristics. In [17] fingerprint and face templates are com-

bined in a FCS. Real-valued fingerprint features and binary

iris-codes are ultilized in [12]. Chunks of binary features

are applied in a FCS and used as additional points within a

fuzzy vault. In [8] 3D face templates obtained by different

feature extraction methods are fused at feature level, score

level and decision level in a FCS. Proposed FLFs in [17, 8]

involve simple concatenations of binarized biometric tem-

plates. A review of biometric cryptosystem technologies

can be found in [3].

3. Improving Reliability Distribution

with Feature Level Fusion

In traditional FCSs, the witness as a bitstream x ∈
{0, 1}n represents directly the binary output of some fea-

ture extractor. We adopt a new function W for the gen-

eration of witness data out of two binary feature vectors

x1, x2 ∈ {0, 1}n, i.e. x = W (x1, x2). This step is use-

ful for two reasons:

1. In classic binary feature extraction, bits of a feature

vector x are not ordered according to their reliabil-

ity, i.e. the probability that the i-th bit comparison

of the corresponding feature vectors correctly indi-

cate whether believed B and observed X identities are

equal:

R(i) =
P (x[i] = b[i] | X = B) + P (x[i] 6= b[i] | X 6= B)

2
.

(2)

But a balanced reliability distribution is a desirable prop-

erty for FCSs, since error correction is designed to handle

a fixed amount of errors within chunks of biometric feature

vectors.

2. Multi-biometrics can be applied to enhance FCS per-

formance without negative impact on the amount of bit

comparisons (n remains fixed).

The FLF function W is computed as follows:

1. For each employed feature extraction method the cor-

responding reliability is approximated in a separate
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Figure 2. The FCS: keys prepared with error correction are XORed with biometric feature vectors in the key-binding process. biometric

features are XORed with the commitment and error correction decoding is applied at key-retrieval. Keys are verified applying hashes.

Authors Modality FRR/ FAR (%) Key Size (Bits) Test Set Remarks

Hao et al. [4]
Iris

0.47/ 0 140 70 subjects ideal images

Bringer et al. [2] 5.62/ 0 42 ICE 2005 short key

Teoh and Kim [18]
Fingerprint

0.9/ 0 296 FVC 2002 user-specific tokens

Nandakumar [11] 12.6/ 0 327 FVC 2002 –

Ao and Li [1] Face 7.99/ 0.11 >4000 294 subjects user-specific tokens

Maiorana and Campisi [10] Online Sig. EER >9 >100 MCYT >1 enroll. sam.

Sutcu et al. [17] Fingerprint & Face 0.92/ �0.01 – NIST DB 27 & Face94 –

Nandakumar and Jain [12] Fingerprint & Iris 1.8/ 0.01 224 MSU-DBI & CASIAv1 use of fuzzy vault

Kelkboom et al. [8] FLF for 3D Face ∼22/ 0.25 155 FRGC >1 enroll. sam.

Table 1. Experimental results of proposed fuzzy commitment schemes.

training stage from a set G = {(x, y)|X = Y } of gen-

uine feature vector samples and I = {(x, y)|X 6= Y }
of impostors:

R(i) ≈
1

2
·

(

‖ {(x, y) ∈ G |x[i] = b[i]} ‖

‖ G ‖
+

‖ {(x, y) ∈ I |x[i] 6= b[i]} ‖

‖ I ‖

)

. (3)

2. Binary biometric samples can be ordered with respect

to global reliability R(i) to achieve even higher recog-

nition accuracy when comparing only parts of bio-

metric data [15]. Therefore, for each feature extrac-

tion method the set of permutations ordering feature

vectors with respect to reliability is considered and

an arbitrary σ ∈ P is selected (In is the index set

{1, 2, . . . , n}):

P = {σ : In → In | ∃σ−1 ∧ ∀i < j : R(σ(i)) ≥ R(σ(j))}
(4)

3. Given two different features with reliabilities R1 and

R2 and corresponding permutations σ1, σ2, we com-

pute W (x1, x2) ∈ {0, 1}n from feature vectors x1, x2

as:

W (x1, x2)[i] =

{

x1[σ1(di/2e)] if i is even

x2[σ2(d(n− i)/2e)] otherwise.
(5)

Error correction codewords, bound to parts of binary bit-

streams which are expected to contain a very small amount

of errors, are not used efficiently since during decoding

only a very small number of bit-errors is corrected. On

the other side, error correction codewords, bound to parts

of binary bitstreams which are expected to contain a very

large amount of errors are not used efficiently either, since

decoding will not succeed.

To achieve a uniform distribution of errors per bit-block

(with respect to the training set) bits at bit positions with low

reliability have to be arranged in bit-blocks together with

bits originating from bit positions which exhibit high relia-

bility and vice versa. For this purpose the first n/2 bits of

reliability-ordered binary biometric data of both algorithms

are combined in a single template of length n. The fusion

is performed in a way such that alternating single bits of

each algorithm are set (bits are interleaved), while the first

n/2 bits of reliability-ordered feature vector bits of the first

algorithm are read from left to right and the first n/2 bits

of reliability-ordered feature vector bits of the second algo-

rithm are read from right to left. The proposed bits fusion

process is illustrated in Fig. 3.

The reliability-balanced FLF technique which provides a

more efficient error correction decoding represents the main

contribution of the proposed scheme.
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Figure 3. Reliability-balanced FLF: two binary biometric templates, x1 and x2, are fused into one template x of same size. Based on

reliability distributions, R1 and R2, obtained from a training set, bits of templates are reordered (in addition one templated is reverse

ordered) and the final template is generated from interleaving the n/2 most reliable bits of both.
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Figure 4. Preprocessing and feature extraction: (a) image of eye

(b) detection of pupil and iris (c) unwrapped and (d) preprocessed

iris texture, iris-code of (e) Masek and (f) Ma et al.

4. Experiments on Biometric Data

4.1. Experimental Setup

Experiments are carried out using the CASIA-v3-

Interval iris database1. In experiments only left-eye images

(1332 instances) are evaluated, since the estimated global

distribution of reliable bits is highly influenced by natural

distortions [15]. At preprocessing the iris of a given sample

image is detected, un-wrapped to a rectangular texture of

512 × 64 pixel, and illumination across the texture is nor-

malized as shown in Fig. 4 (a)-(d).

In the feature extraction stage custom implementations

1The Center of Biometrics and Security Research, CASIA Iris Image

Database, http://www.sinobiometrics.com
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Figure 5. ROC curves for the algorithm of Ma et al., Masek and

score level fusion of both applying the Hamming distance.

of two different iris recognition algorithms are employed.

The first feature extraction method follows an implemen-

tation by Masek2 in which filters obtained from a one-

dimensional Log-Gabor function are utilized to generate

iris-codes of 10240 bit. The second one was proposed by

Ma et al. [9]. Within this algorithm a dyadic wavelet

transform is performed based on which two fixed subbands

are selected. Local minima and maxima above a adequate

threshold are located an encoded extracting 10240 bit. Sam-

ple iris-codes generate by both feature extraction methods

are shown in Fig. 4 (e)-(f). The receiver operating charac-

teristic (ROC) curves of each algorithm and the score level

fusion of both are plotted in Fig. 5 where the Hamming

distance is applied as dis-similarity measure and alignment

is achieved applying up to 8-bit circular shifts in each di-

rection. The score level fusion of both algorithms does not

improve the recognition accuracy.

In the training stage the first 20 classes are applied for

parameter estimation. Remaining subjects of the database

2L. Masek: Recognition of Human Iris Patterns for Biometric Identifi-

cation, Master’s thesis, University of Western Australia, 2003
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Figure 6. Experimental results of the original FCSs of (a) Ma et al., (b) Masek, (c) a fusion of both (every second bit of each algorithm),

the randomized FCSs of (d) Ma et al., (e) Masek and (f) a fusion of both (interleaved randomized bits of each algorithm).

are registered applying a randomly generated cryptographic

key. Commitments are generated from every iris image

and key retrieval is processed for all pairs of stored com-

mitments and iris-codes. Key binding and retrieval is per-

formed according to the approach of Hao et al. [4]. At key

binding a 16 · 8 = 128 bit cryptographic key k is first pre-

pared with a RS(16, 80) Reed-Solomon code. The Reed-

Solomon error correction code operates on block level and

is capable of correcting (80 − 16)/2 = 32 block errors.

Then, the 80 8-bit blocks are Hadamard encoded result-

ing in 80 128-bit codewords (=10240-bit) and bound to the

iris-code by XORing both, i.e. codewords of length n are

mapped to codewords of length 2n−1 where up to 25% of

bit errors can be corrected. Best experimental results were

obtained for this configuration. Since balanced reliability

distributions are estimated based on a training set burst er-

rors may still occur at key retrieval, i.e. block level error

correction remains essential. Additionally, a hash of the

original key h(k) is stored. Key retrieval is performed by

XORing an extracted iris-code with the commitment. The

resulting bitstream is decoded applying Hadamard decod-

ing and Reed-Solomon decoding afterwards. The resulting

key k′ is then hashed and if h(k′) = h(k) the correct key k
is released.

4.2. Performance Evaluation

Focusing on the applied iris recognition algorithms

FRRs of 2.54% and 6.59% are obtained at according

FARs less than 0.01% using the Hamming distance as dis-
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Figure 7. Experimental results of FCS obtained from a fusion of

randomly chosen bits of 5120 most reliable bits of both algorithms.

similarity measure. The score level fusion of both algo-

rithms results in a FRR of 4.58% (see Fig. 5). The FRR

of a FCS defines the percentage of incorrect keys returned

to genuine subjects. By analogy, the FAR defines the per-

centage of correct keys returned to non-genuine subjects. In

case iris-codes of both algorithms are applied in FCSs leav-

ing bit orders unaltered FRRs of 11.93% and 10.87% are

achieved at FARs less than 0.01%. Again, using each sec-

ond bit of according iris-codes within a FCS does not im-

prove the key-retrieval rate. FRRs and FARs for both FCSs

and the fusion scenario are plotted in Fig. 6 (a)-(c). If ran-

dom permutations of iris-code bits are applied, as suggested
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Figure 8. Distributions of reliability within 128-bit blocks according to unaltered templates, randomized templates, and the proposed FLF

for (a) Ma et al., (b) Masek, and (c) a fusion of both feature extraction methods (applied to the training set of 20 subjects).
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Figure 9. Experimental results of the proposed FLF FCS for (a) Ma et al., (b) Masek, and (c) both algorithms.

in [2], a more uniform distribution of errors is achieved and

performance rates are improved. For the feature extraction

of Ma et al. and Masek a FRR of 8.81% and 9.56% are ob-

tained at FARs less than 0.01% (one random permutation

is applied to all iris-codes). Like in the original iris recog-

nition scenario the FCS based on the algorithm of Ma et

al. outperforms the FCS based on the algorithm of Masek

since error correction capacities are exploited more effec-

tively. In the fusion scenario templates are generated by

interleaving randomly chosen bits of according iris-codes.

Again, FLF does not improve the key-retrieval rate result-

ing in a FRR of 9.74%. FRRs and FARs of both algorithms

and the according fusion based on a random permutation

are plotted in Fig. 6 (d)-(f). However, if fused templates are

constructed by randomly choosing bits of parts of iris-codes

detected as most reliable ones, i.e. interleaving randomly

permuted 5120 most reliable bits after reliable bit selection

(RBS) of both feature extraction methods, the key-retrieval

rate is improved resulting in a FRR of 6.53% at a FAR less

than 0.01%. In Fig. 7 the obtained FRR and FAR are plot-

ted.

Reliability distributions of the applied training set aver-

aged over 128-bit blocks are shown in Fig. 8 (a)-(c). Reli-

ability distributions of unaltered iris-codes appear periodic

due to a line-wise processing of feature extractions exhibit-

ing high variation. In case a random permutation of bits is

applied the variation of reliability is significantly decreased,

yielding a significant performance improvement. The pro-

posed FLF achieves a balanced (near uniform) distribution

of reliability for single feature vectors (a fusion of half tem-

System Algorithm FRR (FAR < 0.01) Corr. Blocks

Original (HD)

Ma et al. 2.54 % –

Masek 6.59 % –

Ma+Masek 4.58 % –

Ordered FCS

Ma et al. 11.93 % 32

Masek 10.87 % 28

Ma+Masek 10.97 % 32

Random FCS

Ma et al. 8.81 % 31

Masek 9.56 % 23

Ma+Masek 9.74 % 29

Ma+Masek (RBS) 6.53 % 24

Bits-Fusion FCS

Ma et al. 7.64 % 32

Masek 9.47 % 21

Ma+Masek 5.56 % 24

Table 2. Summarized experimental results.

plates of one feature extraction) as well as the fusion of both

biometric templates. In Fig. 8 a significant improvement of

the average reliability within fused templates is observed

resulting in a FRR of 5.56% at a FAR less than 0.01%. If

the proposed FLF is applied within biometric feature vec-

tors of one template a FRR of 7.64% and a FRR of 9.47% is

obtained for the algorithm of Ma et al. and Masek, respec-

tively. FRRs and FARs of the proposed technique for both

algorithms and the according fusion are plotted in Fig. 9 (a)-

(c). All obtained results are summarized in Table 2 includ-

ing the number of corrected block errors after Hadamard

decoding, i.e. error correction capacities may not handle the

optimal amount of occurring errors within intra-class key

retrievals. While a fusion of the applied feature extraction

methods does not seem to pay off for simple FLF the pro-

posed approach significantly improves key-retrieval rates.



4.3. Privacy Aspects

Recently, template protection schemes based on FCS

have been exposed vulnerable to several attacks. Despite

privacy leakage in FCS [5], i.e. the information that the

stored commitment contains (leaks) about biometric data,

attacks based on error correction code histograms [16] and

decodability attacks [7] have been proposed. These at-

tacks utilize structures of applied error correction code-

words bound to chunks of binary biometric feature vectors.

Since bits of biometric templates are obscured within the

proposed approach, yielding a balanced distribution of reli-

ability, these attacks are aggravated and it is expected that

committed codewords are more difficult to identify, e.g. by

analyzing error correction code histograms. A more so-

phisticated analysis of a potential privacy enhancement pro-

vided presented approach is subject to future work.

5. Conclusion

Diverse biometric modalities have been applied in FCSs,

even in multi-biometric scenarios. However, applied FLFs

for FCSs only involved a concatenation of binary biometric

feature vectors. In this paper a reliability-balanced FLF is

proposed which aims at fusing binary biometric templates

of two feature extraction methods into one single template

of the same size. Reliability-balanced FLF is designed to

balance average reliability across chunks of entire biometric

templates based on a small training set. It is demonstrated

that the proposed technique achieves a more balanced dis-

tribution of reliability yielding improved recognition rates

in a FCS (although a FLF of the applied algorithms does

not pay off for trivial approaches), since error correction is

applied more effectively. Experiments are carried out on iris

biometric data obtaining a significant improvement of key

retrieval rates.
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