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Abstract

Efficient and robust segmentation of less intrusively or
non-cooperatively captured iris images is still a challeng-
ing task in iris biometrics. This paper proposes a novel
two-stage algorithm for the localization and mapping of iris
texture in images of the human eye into Daugman’s doubly
dimensionless polar coordinates. Motivated by the grow-
ing demand for real-time capable solutions, coarse center
detection and fine boundary localization usually combined
in traditional approaches are decoupled. Therefore, search
space at each stage is reduced without having to stick to
simpler models. Another motivation of this work is inde-
pendence of sensors. A comparison of reference software
on different datasets highlights the problem of database-
specific optimizations in existing solutions. This paper in-
stead proposes the application of Gaussian weighting func-
tions to incorporate model-specific prior knowledge. An
adaptive Hough transform is applied at multiple resolutions
to estimate the approximate position of the iris center. Sub-
sequent polar transform detects the first elliptic limbic or
pupillary boundary, and an ellipsopolar transform finds the
second boundary based on the outcome of the first. This
way, both iris images with clear limbic (typical for visible-
wavelength) and with clear pupillary boundaries (typical
for near infrared) can be processed in a uniform manner.

1. Introduction

Iris recognition identifies humans by their iris pat-
terns. Irides are protected as internal flat organs and
claimed to exhibit epigenetic randomness and stability over
decades. They can be captured at-a-distance or on-the-
move, and facilitate one-to-many identification with fast
rotation-invariant comparators. Therefore, binary features
are extracted from Daugman’s doubly dimensionless rep-
resentation [5]. But iris recognition is susceptible to poor
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image quality. Efficient and robust segmentation of iris im-
ages is one of the most challenging problems in the field
[12], especially for biometric systems without active partic-
ipation of users. This led to a variety of public iris segmen-
tation challenges in the last decade, e.g. ICE' and NICE?.
Still, computational demands as a very important factor in
real-world applications and the tradeoff between accuracy
and speed, have largely been neglected in evaluations so far.
Furthermore, it has become common practice to enable par-
ticipants to optimize their segmentation algorithm based on
available training sets, which may lead to non-repeatable re-
sults when changing underlying datasets. This situation is
even more critical, since the majority of segmentation algo-
rithms is not publicly available for independent evaluations.

This work highlights real-time and database-independent
iris segmentation. It proposes a generic iris segmentation
technique under hard constraints: (a) segmentation in the
order of deciseconds, and (b) no strong assumptions on im-
age type and conditions. While most segmentation algo-
rithms employ some sort of exhaustive searching or single
error-prone strategies to detect pupillary and limbic bound-
aries [2, 11], this paper presents a two-stage iris segmen-
tation framework. Compared to traditional techniques it
has three major advantages: First, modules may easily be
extended to incorporate more sophisticated techniques for
individual tasks, yielding a trade-off between computation
time and segmentation accuracy. Second, in presented con-
figuration using a novel weighted version of an adaptive
Hough transform [3] for approximate center detection and
Polar and Ellipsopolar transforms for boundary detection,
this incremental technique is faster and more scalable with
respect to resolution. Third, failures can be detected and
corrected in early stages leading to more robustness.

The paper is organized as follows: Section 2 reviews re-
lated work, Sec. 3 describes the proposed algorithm, exper-
iments are outlined in Sec. 4 and summarized in Sec. 5.

!ris Challenge Evaluation, http://iris.nist.gov/ice/
2Noisy Iris Challenge Evaluation Part I, http://nice].di.ubi.pt/
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Authors \ Main stages

Algorithm steps

\Database Accuracy \Time ‘

ary (polar)

Labati et al. [8] | Center, Bound- | (1) agent-based method for center localization (2) mul- | Casia.v3,
tiple views boundary refininement

90-97% 0.68 s
Ubiris.2

He et al. [7]
ary (polar)

Center, Bound- | (1) reflection removal (2) Adaboost-cascade for approx- | Casia.v3, ICE
imate center detection (3) Pulling-and pushing model EER ms

0.53-1.29% | 12-22

Chen et al. [4]

Sclera, Bound- | (1) sclera location (2) fast Hough transform for limbic | Ubiris.2

97-98% 0.83s

ary (Hough) boundary, (3) eyelid detection (4) correction of limbic
boundary by another Hough transform (5) eyelash de-
tection and reliability
Oroz et al. [9] Center, Bound- | (1) color component selection (2) reflection extraction | Ubiris.2 97% 3s
ary (polar) (3) limbic polar morphologic boundary extraction (4)
center reestimation (5) pupillary boundary estimation
Proenca [11] Sclera, Iris, | (1) sclera detection (2) iris detection by machine learn- | Ubiris.v2, ICE, | 1.87-4.61% | 0.70-
Shape ing (3) parameterization of iris shape FRGV, FERET | EER 0.78 s

Table 1. Experimental results of recently proposed multi-step iris segmentation algorithms.

2. Related Work

The main task of an iris segmentation algorithm is to
map the iris texture of an m X n sized eye image I into
Daugman’s homogeneous rubbersheet model [5]. More pre-
cisely, a rendering map R is looked for, assigning - regard-
less of pupillary dilation and iris size - each pair (6, ) of an-
gle 6 and pupil-to-limbic radial distance r the correspond-
ing originating location R(6, r) within I:

R :[0,27) x [0,1] — [0,m] x [0, n] (1)

In Daugman’s representation, R is established as a lin-
ear combination from circular pupillary and limbic polar
boundary curves P, L : [0,27) — [0, m] X [0,n], typically
modeled as circles with not necessarily coinciding centers:

R(O,r):=(1—r)-P(0)+r-L(O) )

Note, that in practice, P and L may be modeled as arbitrary
polar sampled curves. In case the iris texture is occluded
by eyelids, the model assumes that P and L mark the true
possibly occluded pupillary and limbic iris boundaries, re-
spectively. Within the resulting iris texture, areas occluded
by eyelids, eyelashes or reflections should be masked out
using binary noise masks NN of the same size:

N :[0,27) x [0,1] — {0,1} 3)

Finally, R, P, L, and N are typically discretized in imple-
mentations.

State-of-the-art iris segmentation systems (see [2, 11] for
an overview) may be classified into two different types. The
first kind of algorithms are model-based techniques, fitting a
parameterized shape by some exhaustive searching method
to derive P and L. Compared to the traditional segmenta-
tion algorithms by Daugman [5] using an integrodifferential
operator, or Wildes [16] using binary edge maps and Hough
transform to approximate P and L as circles, the following

improvements have been proposed in the literature so far:
(a) better models, such as ellipses or view-angle transforma-
tions to account for off-gaze [15], (b) better occlusion detec-
tion [17], (c) after-fit refinements permitting more complex
shapes including active contours, active shape models [1]
and Fourier series expansions [6], modeling and smoothing

the series of k polar boundary gradient values (rg)’g;é with

| Fourier coefficients (f;)}_ to a new boundary ()5, :

k-1 -1

o —2mitd [k . 2mit [k
fo= gree Ty ;fte (4)
A disadvantage of most of these single-strategy techniques
is high computational demand. The second kind of algo-
rithms are multi-stage methods, where not a single but mul-
tiple different models are applied to solve subproblems of
the segmentation task, such as separate stages for sclera
detection, center-detection, pupillary and limbic boundary
detection. Each stage employs a simpler model, thus re-
ducing the amount of parameters needed. The result serves
for some transformation input to simplify the next stage. A
common employed transform (e.g. in [8, 9, 7]) once an iris
center (z,y) has been found is the polar transform 7" and its

inverse T~!, in order to simplify boundary detection:

0 T+ 7 cosf
. + 2 R
T : [0, 27(') X RO — R 9 T (7«) T (y + ’I"Sin0> (5)

The approaches of Labati et al. [8] and Oroz et al. [9] in Ta-
ble 1, listing examples of recently proposed multi-step algo-
rithms, employ this transform to reduce parameters of their
Hough-based model and speed-up the computation. He et
al. [7] use polar transform as an intermediate step to get gra-
dient values for their pulling-and-pushing model. Chen et
al. [4] use again speed-ups of original Hough transform re-
ducing parameter space with a pre-location of the pupillary
center. Some newer approaches operating on visible-range
iris data conduct separate Sclera detection stages, e.g. [11].



3. Technical Details

In order to obtain more robustness to various noisy ar-
tifacts of less intrusively or non-cooperatively captured iris
images, the proposed algorithm illustrated in Fig. 1 is a
two-stage segmentation technique.

The first task consists of finding a center point C' within
the input image I completely inside the limbic and pupillary
boundary. The key operation to derive C'is a novel weighted
adaptive Hough transform, which determines the center of
multiple approximately concentric rings at iteratively re-
fined resolution. It accumulates lines in direction of the
gradient at boundary edge candidate points, giving a higher
weight to locations in the center of the accumulator. While
C is not unique, ideally it will be close to the centers of
circles approximating L and P. The idea is to exploit orien-
tation and magnitude of both pupillary and limbic edges to
find C, instead of sequential boundary extraction. As noted
in [11], until now, almost all state-of-the-art segmentation
systems employ a fixed order, in which pupillary and lim-
bic boundaries are fitted, usually influenced by the type of
training data. The reason for this behavior can be explained
by the different nature of near infrared (NIR) images, with
high contrast pupillary boundaries, and visible-range (VR)
images, with clearly visible limbic edges. The advantage of
the presented approach is a uniform processing of different
image types emphasizing database-independence.

The second task consists of extracting P and L from a
polar representation using C' as origin. Within this repre-
sentation all boundary edges have approximately the same
orientation, which reduces the cost of edge detection. Like
in the stage before, no strict order for the detection of limbic
and pupillary boundary is given. Instead, an initial bound-
ary B is detected from the polar transformed input by (a)
determining the maximum-energy horizontal line (model-
ing a circle in cartesian coordinates), (b) maximizing the
vertical polar gradient for each column (discrete angle), (c)
smoothing the resulting curve, (d) remapping candidates to
cartesian coordinates, and (e) fitting the edge points with
an oriented ellipse. Since the found boundary B is either
the limbic or pupillary boundary, the algorithm continues
to find the second boundary based on the two hypotheses
Hy: B = Pand Hy : B = L using an Ellipsopolar trans-
form. This transform maps ellipses concentric with elliptic
boundary B to horizontal lines, which is helpful since P
and L should be approximately concentric. Again, steps
(a)-(e) are executed to derive an inner candidate P’ and
outer candidate L’. Based on the outcome of the gradient
energy e of these contours one hypothesis is rejected. In
case e(P’') > e(L’) hypothesis H is rejected and P = P’,
otherwise L = L'. Finally, the rubbersheet transform is
applied.

An intended goal of the proposed framework is the uni-
form processing of pupillary and limbic boundaries for VW
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Figure 1. Architecture of proposed two-stage iris segmentation.

(visible wavelength) and NIR (near-infrared) images, the
latter exhibiting a sharper pupillary boundary, especially for
dark irides. Also noise masks, using e.g. methods in [7], are
not yet computed. While they may certainly improve recog-
nition rates when employing Daugman’s hamming distance
(HD) comparator, (a) they are not critical for the rubber-
sheet mapping, (b) fast and well-working methods already
exist, and (c) there are even new comparators available as
alternatives to the storage of noise masks [13].

Segmentation software uses the OpenCV? image library
and is written in C++.

3Intel, Willow Garage: Open Source Computer Vision Library,
http://opencv.willowgarage.com



3.1. Reflection Mask Detection and Removal

Reflections inside the pupil may significantly affect it-
erative center search. Therefore, a reflection mask M :
[0,m] x [0,n] — {0,1} is computed in three steps: (a)
Adaptive thresholding selects all pixels (x,y) with intensi-
ties exceeding the local mean A(z, y) in the 23 x 23 neigh-
borhood plus a constant ¢ = 60:

)=

(b) Region size filtering sets all connected one-components
in M 4, which are less than 10 and greater than 1000 pixels,
to zero; and (c) Morphological dilation is applied using a
circular 11 x 11 structuring element.

In order to remove reflections, the original image [ is in-
painted using M, i.e. all selected regions are reconstructed
from their boundary using the Navier-Stokes method na-
tively provided by the OpenCV library, resulting in in-
painted image I'.

if I(z,y) > A(z,y) + ¢
otherwise.

(6)

3.2. Edge Detection and Boundary Mask

Edge phase Pg : [0,m]x[0,n] — [0, 27) and magnitude
Mg : [0,m] x[0,n] — Ry are estimated from the inpainted
image I’ using horizontal and vertical 7 x 7 Sobel kernels.
A boundary edge mask E : [0, m] x [0,n] — {0, 1} detects
initial candidate points for center estimation in the next step:
from the top 20 percent of edge points with respect to edge
magnitude all candidates within cells of a 30 x 30 grid with a
dominant mean orientation (i.e. the magnitude of the mean
orientation exceeds m = 0.5) are selected. The idea of this
filtering is to remove candidate points in eyelashes with an
almost equal amount of high edges with opposite directions.

3.3. Weighted Adaptive Hough Transform

In order to speed up traditional Hough transform, we
have adopted an iterative approach to finding the center
point C' proposed by Cauchie et al. [3]. Instead of esti-
mating center and radius of the most dominant circle, this
method tries to find the center of the most distinctive con-
centric circles in the image using not only gradient magni-
tude but also gradient orientation. Compared to the basic
version of this algorithm in [3], a number of modifications
have been applied: (a) Bresenham’s fast line algorithm is
used to fill accumulator cells, (b) voting accounts for magni-
tude information, (c) a new weighting step employs a Gaus-
sian function to account for prior knowledge, and (d) the
region of interest refinement step has been simplified to se-
lect a highest energy cell only.

Starting with ¢+ = 0 our modified version of this algo-
rithm consists of three iteratively executed steps at each
stage 1, see also Fig. 2: (a) Initialization: For a rectangular
region of interest R; of size m; x n; (initially Ry = I'), an
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Figure 2. Weighted Adaptive HT: Voting (a) and Weighting (b).

accumulator A; consisting of a fixed w x h grid of cells cov-
ering R; is initialized with zero. From the set of candidate
edge points E;_; (initially E_1 = {(z,y) : E(x,y) = 1}),
all points P; € E;_; , whose gradient lines g; do not inter-
sect with R;, are rejected in E;. (b) Voting: All cells in A;
crossed by a gradient line g; of a candidate point in E; are
incremented using the absolute gradient value. (c) Weight-
ing: the accumulator A; is downscaled, multiplied with a
centered Gaussian kernel G, the cell of maximum value is
found and R;; is centered in the cell’s center (z/,y’). As
long as R;yq (with m;y = 54, n; 1 = %) is larger than
a predefined threshold, the algorithm repeats with step (a),
following a coarse to fine strategy, otherwise C' = (z’, /).

By adding a weighting step, modeled by Gaussian G, it
is possible to incorporate the heuristic, that at each stage it is
likely to find the maximum cell near the center of the accu-
mulator. Especially for early stages this is a valuable prior
knowledge to suppress eyelid gradients. The implementa-
tion uses a 101 x 101 accumulator grid, 0.5 pixel as the
accumulator precision threshold and the applied Gaussian
sigma has been set to one third of the downscaled accumu-
lator size.

3.4. Polar Transform Initial Boundary Detection

In the polar transform stage, found center C' is used to
polar unwrap the iris image I’ using a discretized version of
Def. 5, restricted to a maximum mapped radius, resulting
ina k x g polar image I,,. The angular dimension typically
depends on the desired output resolution, and is set to k =
512 per default, the radial dimension is set to g = 512 x %,
the maximum mapped radius corresponds to the maximum
distance from C' to each image corner.

Initial Boundary detection operates on the polar trans-
formed I, to derive a boundary contour. Therefore, I, is
convolved with an oriented 21 x 21 Gabor kernel:

2 2 /2 !
gl "+ 7%y x
502 exp ( 952 ) cos (271' \ + w>

where 2’ = x cos(#) + y sin(0),

g(x,y) =

y' = ycos(f) — zsin(f)
(N



All candidate edges have the same orientation, therefore a
good choice is A = 87,9 = 5,0 = 6,7 = 0.5,0 = — 7.
The resulting gradient image is Gp.

Initial boundary B is determined as follows: (a) Starting
at an offset o = 12 (to avoid image border effects), for each
radial value r € [0, g — 1] N N (corresponding to a line in
G,) the sum of gradient values at each discrete polar an-
gle € [0,k — 1] N N is computed and the polar contour
series (bg)]g;é is initialized by the radius r,, 4, with maxi-
mum gradient sum, i.e:

VO : by = Timaz- ®)

(b) Using gradient fitting within a local radial window W
(we use W = [—15, 15] N N), the contour gradient is maxi-
mized yielding a refined contour (bj)5=3:

Vo - b/e = by + maxarg (Gp(ea by + Z)) ©)
w

1€

(c) The resulting contour is smoothed using 1D Fourier se-
ries expansions (see eq. 4) keeping the DC and 1 coeffi-
cient, followed by another gradient fitting (b) with reduced
window size 5 and again a Fourier fitting (c) keeping the
DC plus 3 coefficients, resulting in (bjj)5_%. Finally step
(d) maps (b} )’g;é back to cartesian coordinates (using the
inverse polar transform) and uses the best-fitting ellipse in
a least-squares sense, computed using the Fitzgibbon algo-
rithm natively provided by OpenCYV, as boundary curve B.

3.5. Ellipsopolar Transform Inner and Outer
Boundary Detection

Typically, after the first iteration of polar boundary de-
tection, found curve B can be used to derive a more ac-
curate center than C. An even better idea is to take the
shape of B into consideration: This work proposes the ap-
plication of an ellipsopolar transform, which is essentially
a polar transform after translation, rotation and stretching,
mapping concentric ellipses to axis-parallel lines, see Fig.
3. Let B be the polar sampled representation of a general
oriented ellipse with center (x,y), half axes a, b and angle
of inclination «, then the general ellipsopolar transform is
defined as:

Tg : [0,27) x Rf — R?

0 x cosa —sina racos(d — «)
Te (r) = (y) + (sina cos & ) * (rbsin((t? — a))
(10)
Note, that again a discretized version with maximum map-
ping radius of this map is applied, analogous to the polar
transform introduced before. By mapping inpainted input

image I’ into ellipsopolar coordinates, we can again per-
form boundary fitting (i.e. seeking an inner boundary by
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Figure 3. Ellipsopolar transform: Cartesian domain (a) and Ellip-
sopolar domain (b).

restricting our search to radial values » < 1 and an outer
boundary with » > 1) using the same steps (a)-(d) intro-
duced in the initial boundary detection phase, except, that
now the initialization phase favors an elliptic boundary con-
centric to B, which is a very good first approximation. In
order to further incorporate model-specific prior knowledge
in step (a) a Gaussian weighting function is applied to the
sum. The actual weight depends on the radial distance r of
the current radial distance to the reference contour B (we
use Gaussian parameters j; = 0.66, 0; = 0.44 for the inner
search and p, = 2.5, 0, = 1 for the outer boundary search).
The result of inner and outer boundary detection are elliptic
boundary candidates P’ and L'.

3.6. Boundary Selection and Rubbersheet Trans-
form

Having computed P’ and L’ based on the hypotheses
Hy : B = Pand H; : B = L, respectively, the task of
boundary/hypothesis selection involves the computation of
the following gradient energy function e for an ellipsopolar
sampled boundary curve X with respect to ellipse B (defin-
ing the ellipsopolar mapping):

k—1

e(X):=> Mg(X(0)) * W(u,o,r(X,0,B)) (1)
6=0

Le., the gradient values in Mg at discrete sample points of
X are summed and weighted using a Gaussian weighting
function W using the ellipsopolar radial value r(X, 6, B) of
X with respect to transform ellipse B at angle ¢ and fixed
Gaussian parameters (, 0. Depending on whether the inner
or outer boundaries are evaluated, p;, o; or u,, o, from the
inner and outer boundary detection stages introduced before
are used. If e(P’) > e(L') we set P = P’, otherwise
L=1r.

Finally, the resulting boundary curves P and L are sub-
jected to Daugman’s rubbersheet model (see Def. 2), and
the resulting iris texture is enhanced using contrast-limited
adaptive histogram equalization [14].



4. Experiments

Iris segmentation software is driven by three different
quality factors: Accuracy is the desired property of robust
detection of pupillary and limbic boundaries with few seg-
mentation errors. Especially robustness to moderate noise
factors, such as defocus or motion blur, varying illumina-
tion, off-gaze, high variance in iris size and non-linear dis-
tortions by the application of imperfect iris models, is de-
sirable. This quality factor is evaluated by assessing the im-
pact of segmentation on verification recognition accuracy,
i.e. ROC curves, given in Figs. 4-6. Speed, i.e. adher-
ence to near real-time constraints (at least less than 1 sec-
ond processing time per image), is a quality factor often
neglected in comparison studies, but this factor is most crit-
ical in applications. Average segmentation time is evalu-
ated for each of the employed databases, see Fig. 7. Fi-
nally, usability is the quality factor most difficult to quan-
tify, but possibly the most important of all three factors.
Usability refers, to which extent a segmentation algorithm
can be used with effectiveness, efficiency, and satisfaction.
This includes reproducibility of segmentation performance
under different sensors and environmental conditions (i.e.
the algorithm avoids database-specific funing), the ability to
exchange and improve single submodules of the algorithm
(i.e. ideally availability as open source software), and easy
parameterless configuration and intuitive use of the segmen-
tation tool. Usability is evaluated by setting results on dif-
ferent databases into context and analyzing segmentation
errors and results in Figs. 9-10.

4.1. Experimental Setup

Experiments are carried out using 3 different datasets
from open biometric databases: (a) Casia-I consists of the
left-eye subset (1332 images) of CASIA-V4* set Interval,
good quality NIR illuminated indoor images with 320 x 280
pixel resolution, (b) Casia-L is composed of the first 10 left-
eye samples of the first 100 users (1000 images) in CASIA-
V4 set Lamp, a more challenging 640 x 480 pixel resolution
indoor NIR images dataset, (c) ND is a subset of 42 classes
with 10 samples per class (420 images) in ND-IRIS-0405°,
non-ideal 640 x 480 pixel resolution indoor NIR images.

For reference performance, the following algorithms
have been used: (a) OSIRIS® is an open source reference
system for iris recognition and uses a two-stage approach
for segmentation: First, the pupil region in the image is
roughly searched using a binarization and exploiting the
circularity of the pupil. Limbic and pupillary contours are

4The Center of Biometrics and Security Research, CASIA Tris Image
Database, http://biometrics.idealtest.com

5Computer Vision Research Lab, Univ. of Notre Dame Iris Dataset
0405, http://www.nd.edu

©Krichen ef al.: A biometric reference system for iris. OSIRIS version
2.01, http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris/
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determined using Hough transform and active contours for
refinement. (b) Pcode’ is a custom implementation of an
Hough transform approach using (database-specific) con-
trast adjustment to enhance pupillary and limbic bound-
aries, Canny edge detection to detect boundary curves and
enhancement techniques to remove unlikely edges.

For all algorithms, evaluations used the 512 x 64 pixel
iris texture in doubly-dimensionless coordinates only, nei-
ther noise masks nor other enhancement methods on the

"Pschernig: Cancelable biometrics for iris detection with parameter-
ized wavelets and wavelet packets, Master’s thesis, Univ. Salzburg, 2009



T
Pcode mmmmmm

6000 [~

5 OSIRIS Eossss
é’/ 5000 Proposed o _|
= 4000 -
on

£

2 3000 —
Q

S

& 2000 -
3

£ 1000 | .

Casia-I Casia-L ND

Figure 7. Total segmentation time for different datasets.

. Equal Error Rate (EER

Algorithm Cas?a-l \ Casia-L \( N];
Pcode 0.74% | 28.77% | 22.01%
OSIRIS 16.40% | 14.89% | 15.45%
Proposed 1.20% | 4.36% | 12.90%

Table 2. Summarized segmentation accuracy.

Segmentation Time (ST)

Algorithm Casia-I ‘ Casia-L ‘ ND
Pcode 049 s 1.96s | 2.29s
OSIRIS 346s | 621s | 6.27s

Proposed 0.21s | 0.26s | 0.25s

Table 3. Summarized segmentation time per image.

original textures were considered. All obtained textures
were enhanced using Contrast-limited adaptive histogram
equalization [14]. To assess the impact on recognition ac-
curacy, the feature extraction technique by Ma et al. [10]
is applied, using a custom implementation optimized for
Casia-1. This algorithm performs a dyadic wavelet trans-
form and selects local minima and maxima above an ade-
quate threshold in two subbands, yielding a 10240 bit code.
Hamming distance is applied as dissimilarity measure and
alignment is achieved applying up to 7-bit circular shifts in
each direction. Note, that higher error rates compared to
evaluations where noise masks are considered or the feature
extraction stage is optimized for the employed dataset are
expected and do not necessarily reflect segmentation errors
(especially for the more challenging datasets).

4.2. Experimental Results

For the Casia-I dataset, experiments resulted in the best
Equal Error Rate (EER) of 0.74% at on average 0.49 sec-
onds segmentation time per image (ST) for the Pcode imple-
mentation. This result is not too surprising, as this method
is explicitly tuned to deliver good results for this database,
boundaries can well be represented with circles and usually
strong models provide good results in case of weak data

© (d)
Figure 8. Typical Pcode segmentation failure types: eyelid
matches circular model (a), squeezed eyes (b), inaccurate model
for off-gaze (c) and oversegmentation due to hair (d).

(such as soft limbic boundaries). However, a strong model
becomes useless if the data can not well be represented,
see Fig 8. The proposed method follows closely with only
slightly higher 1.20% EER at 0.21 ST. Finally, OSIRIS with
16.4% EER at 3.46 ST delivered worst accurate results and
also the highest ST. When looking at the type of segmen-
tation errors made by the algorithms, it is interesting to
see, that OSIRIS frequently makes over-segmentation errors
(due to less pronounced limbic boundaries) while our pro-
posed method reveals a few over-segmentation errors due to
sharp collarettes.

In Casia-L the proposed method provides the best results
(4.36% EER at 0.26 ST) clearly outperforming OSIRIS
(14.89% EER at 6.21 ST) and Pcode (28.77% EER at 1.96
ST). It is interesting to see, that a quite well-working seg-
mentation system (Pcode) may fail completely, if assump-
tions do not hold. Pcode’s segmentation errors include
many complete failures and some under-segmentation er-
rors due to eyelids. OSIRIS exhibits many over- and under-
segmentation errors. For this dataset segmentation of the
proposed algorithm works quite well, except in case of very
strong eyelids, which affect ellipse fitting.

Even though the OSIRIS algorithm is tuned to deliver
good results for ICE-2005 our implementation delivers the
best results for ND (the parent database is a superset of ICE-
2005) with 12.90% EER at 0.25 ST, followed by OSIRIS
(15.45% EER at 6.27 ST) and finally Pcode (22.01% EER
at 2.29 ST). The type of segmentation errors made by all
three algorithms are comparable to Casia-L, with slightly
more stable results provided by OSIRIS. Still a severe prob-
lem in OSIRIS is the fact that the computation of snakes is
not reflected in the rubbersheet mapping, yielding mapping
distortions, see Fig. 9.



Figure 9. Osiris ND #0428d197 segmentation failure : rubbersheet
mapping (a) causes distortions (c), despite of accurate snake (b).
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Figure 10. Good segmentation results of proposed algorithm for
challenging examples: CASIA-I (a-c), Casia-L (d-f), ND (g-i).

In summary, from the tested algorithms the proposed
technique clearly provided fastest and most stable results
across databases, see Fig. 10. Observed recognition rates
and processing time are given in Tables 2 and 3.

5. Conclusion

Typically, iris segmentation algorithms are optimized
with respect to a given database, neglecting the need for
high usability of segmentation algorithms. In this paper a
two-stage iris segmentation framework is proposed, which
aims to account for all three quality factors of segmentation:
accuracy, speed and usability. The proposed algorithm is
shown to require less processing time and to exhibit more
robustness than tested open iris segmentation software. Ex-
periments confirm, that existing segmentation software in
the field is highly affected by the type of iris data, i.e. the
used iris database. The proposed method tries to avoid

this over-fitting with respect to input data and does not use
database-specific segmentation parameters or assumptions.
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