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Abstract. This paper presents a multi-stage iris segmentation frame-
work for the localization of pupillary and limbic boundaries of human
eyes. Instead of applying time-consuming exhaustive search approaches,
like traditional circular Hough Transform or Daugman’s integrodifferen-
tial operator, an iterative approach is used. By decoupling coarse center
detection and fine boundary localization, faster processing and modular
design can be achieved. This alleviates more sophisticated quality control
and feedback during the segmentation process. By avoiding database-
specific optimizations, this work aims at supporting different sensors
and light spectra, i.e. Visible Wavelength and Near Infrared, without
parameter tuning. The system is evaluated by using multiple open iris
databases and it is compared to existing classical approaches.
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1 Introduction

Iris recognition uses patterns of the iris of an individual’s eye for human iden-
tification and is considered to be one of the most accurate biometric modalities
[2]. Traditional iris processing following Daugman’s approach [5] extracts bi-
nary features after mapping the textural area between inner pupillary and outer
limbic boundary into a doubly dimensionless representation. In this model, pix-
els are identified by their angular position and shift from pupillary to limbic
boundary, see Fig. 1. This way, different pupil dilation caused by varying il-
lumination conditions can largely be tolerated. Early segmentation techniques
simply employed circular Hough Transform [17] to find a parameterization of the
boundaries needed for the mapping process. However, iris images captured under
more realistic, unsurveilled conditions cause problems. Noisy artefacts caused by
blur, reflections, occlusions, and most notably oblique viewing angles may lead
to severe segmentation errors. If such errors occur, subsequent recognition is
almost impossible. Since iris segmentation is susceptible to poor image quality,
efficient and fast segmentation of iris images is still an open research question
[13].

While most proposed iris segmentation techniques (see [2] for a survey) follow
holistic approaches optimizing the parameters for a more-or-less simple (circular,
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Fig. 1. Basic operation mode of iris segmentation.

elliptic) model of the iris, this paper presents a multi-stage iris segmentation
framework decoupling the tasks of initial center detection and boundary fitting.
More formally, we present a novel iris texture mapping function R : [0, 1] ×
[0, 2π] → [0,m]×[0, n] assigning each pair (r, θ) of pupil-to-limbic radial distance
r and angle θ its originating location R(r, θ) within I. Note, that θ in this model
refers to some parametrization of the iris boundary, not necessarily a circle,
and that applications typically implement a discretized version. While we adopt
Daugman’s [5] solution R(r, θ) := (1 − r) · P (θ) + r · L(θ) establishing a linear
combination of pupillary and limbic polar boundary curves P,L : [0, 2π] →
[0,m]×[0, n], the proposed segmentation framework concentrates on efficient and
robust ways to obtain P and L. Instead of employing some sort of exhaustive
searching or single error-prone strategies to derive P and L, this paper suggests
to employ multi-stage iris segmentation for heterogeneous processing of visible
wavelength (VW) and near infrared (NIR) imagery using the same processing
technique. Especially for combinations of face and iris biometric modalities, there
is a growing demand for iris segmentation techniques without strong assumptions
on source image characteristics. Iris segmentation in VW frequently employs
sclera search for approximate location [12], but this preprocessing raises problems
in NIR because of lower contrast between sclera and skin. On contrary, NIR iris
processing often relies on the pupil being easy localizable as a homogeneous dark
region with high pupillary contrast, often violated in VW for dark irides. The
proposed segmentation approach tries to build a very generic model without
assumptions restricting the application to NIR or VW images.

This paper is organized as follows: Section 2 reviews related work regarding
iris segmentation. Subsequently, the proposed framework is described in Section
3. Experiments are outlined in Section 4 using four different open iris-biometric
databases and comparing results with two reference systems. Finally, Section 5
concludes this work.
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2 Previous Work

According to the survey of Bowyer et al. [2], existing iris segmentation software
in the field is largely based on two classical approaches with minor refinements
only. Daugman’s [5] approach applies exhaustive searching for center and radius
using an integrodifferential operator to approximate P and L as circles. Wildes’
[17] approach is similar, but uses binary edge maps and Hough Transform (HT),
which is claimed to produce more stable results. The vast majority of known seg-
mentation algorithms is based on these ideas and presents minor improvements
[2]: for example, multi-resolution to speed up Hough transform, Canny edge de-
tection to exclude unlikely boundary candidates, or histogram-based approaches
for coarse pupil location and circle fit.

A significant modification to circular segmentation methods was introduced
with active contours (AC) and active shape models (ASM). Abhyankar et al. [1]
proposed ASM to account for inaccurate circular iris segmentation, especially
for off-gaze iris images. ASMs use an idea similar to AC, looking for a contour
minimizing an energy function composed of shape and image energy. While the
image energy is defined in terms of the intensity difference on two sides of con-
tour, shape energy tracks the difference between the current and average trained
shape. Other approaches [6,15] have also identified the drawback of circular fit-
ting, and use more complex shapes (like ellipses) or view-angle transformations
to account for off-gaze.

The majority of iris recognition systems employ near infrared (NIR) imaging,
capturing images at 700-900 nm wavelength, sacrificing pigment melanin infor-
mation at the benefit of less reflections and even clearer texture information
for heavily pigmented dark irides. However, recent challenges like the Noisy Iris
Challenge Evaluation (NICE) now focus on the processing of visible-wavelength
(VW) iris images. While images of the first type typically exhibit a very clear
pupillary boundary, for the latter VW iris images, reflections, more heavily pig-
mented irides and typically smaller pupillary areas cause a much clearer limbic
boundary. As a consequence, segmentation approaches are typically very dif-
ferent. Li et al. [9] and Chen et al. [4] implemented speed-ups of original HT
reducing parameter space with a pre-location of the pupillary center. In available
reference systems, this is a common practice to achieve acceptable segmentation
time. However, there is high risk, that proposed heuristic preconditions do not
hold in case of a change of sensors, especially from NIR to VW and vice versa.
The approaches of Oroz et al. [10] and Labati et al. [8] explicitly try to avoid HT
because of its huge processing time requirements and work with polar gradient-
based approaches. This has the advantage, that oriented gradient masks may
more effectively be applied. Iterative refinement of iris segmentation is allevi-
ated and therefore polar image processing is also applied in our segmentation
framework allowing also easy extension of modules to incorporate more sophisti-
cated techniques for individual tasks. An example of a different implementation
of single processing steps (relying on a weighted version of adaptive Hough trans-
form), but following the proposed multi-stage approach has been published by
the authors in [16].
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3 Proposed Iris Segmentation Algorithm

The proposed iris segmentation algorithm divides the task of finding accurate
pupillary and limbic boundary curves P,L into three subtasks: (1) image en-
hancement, (2) finding a center point, and (3) detecting contours given the ap-
proximate center as reference point. We consider this approach being a frame-
work, since concrete implementations may refine either task of this processing
chain building a concrete segmentation algorithm. The proposed reference imple-
mentation used in this work is illustrated in Fig. 2. Software uses the OpenCV1

image library and is written in C++.

3.1 Image enhancement

The first task in the proposed processing chain enhances the input image by
reducing the amount of noise able to degrade segmentation accuracy. While
generally, determining a proper segmentation input resolution, reducing effects
from defocus or motion blur may be implemented at this stage of processing, the
current implementation concentrates on reflection removal. Hot spots caused by
the use of flash, pupillary reflections of windows or other objects emitting light
can be suppressed by looking for small objects with high luminance values. While
the sclera in eye images typically represents the area with highest luminance
in VW, in NIR the sclera is typically much darker. Still, reflections can be
accurately identified by size filtering.

Reflection removal

Edge orientation

Boundary detection

Adaptive Hough Transform

Polar transform

Polar boundary detectionFourier-based trigonometry

Boundary refitting

Rubbersheet mapping

Iris Texture

Pulling and Pushing

YesNo

Iris Image

First

iteration?

Preprocessing module

Fig. 2. Proposed segmentation framework: reflections are removed, an adaptive HT
uses both gradient orientation and magnitude to estimate a center of multiple concen-
tric rings, limbic and pupillary boundaries are detected in polar images and iteratively
refined.

1 Intel, Willow Garage: Open Source Computer Vision Library, http://opencv.

willowgarage.com

http://opencv.willowgarage.com
http://opencv.willowgarage.com
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For reflection removal, all pixels with intensities higher than the 0.85 quan-
tile are selected, morphologically dilated using a circular 10 × 10 structuring
element in 2 iterations and resulting regions are size-filtered rejecting all regions
exceeding a total size of 2000 pixels. This is necessary to keep small reflection
spots only and avoid inpainting of the sclera region. Inpainting is a very time
consuming step. All selected regions are reconstructed from their boundary using
Navier-Stokes inpainting.

3.2 Center point detection

The next task computes an approximate position of the iris center, which is
basically any point completely inside the limbic L and pupillary P boundary,
exploiting the fact that the required eye center is the unique center of multiple
concentric rings. Using this definition, the center of an eye is not unique - ideally,
a center point should be close to the centers of circles approximating L and P .
An advantage of this method is, that it enables transparent processing for NIR
and VW images since typically either pupil (NIR) or iris boundary (VW) may
contribute to a larger extent to the center search. To alleviate center search,
gradient magnitude and orientation is computed from the enhanced image. We
employ Adaptive Hough Transform [3] for iterative center detection using a
10× 10 accumulator grid with 0.5 pixel precision threshold:

1. The accumulator is initialized and candidate points obtained from the gradi-
ent image are evaluated. In addition to the reference implementation [3], to
select initial candidate points, not only edge orientation is estimated (using
horizontal and vertical 3 × 3 Sobel kernels), but a boundary edge mask is
calculated from the top 20 percent of most intensive edge points (using mag-
nitude) in Gaussian blurred gradient images rejecting all candidates within
cells of a 30×30 grid with no dominant mean orientation (i.e. the magnitude
of the mean orientation is less than 0.5). By this modification we avoid gra-
dient information from eyelashes, which will exhibit an almost equal amount
of high edges with opposite directions.

2. All candidate points whose gradient lines do not intersect with a region of
interest are rejected, while all cells crossed by the gradient lines are incre-
mented with the absolute value of the gradient. In addition to the basic
version Bresenham’s fast line algorithm is applied to fill cells.

3. After each round, the cell of highest value is found and (following a coarse to
fine strategy) the process repeats with a finer accumulator until a sufficiently
accurate position is found. To further enhance speed, the supercell of 4 cells
with highest energy is selected as new ROI.

3.3 Polar boundary detection

Pupillary and limbic boundary detection is composed of the following steps:

1. The determined center C = (a, b) is used to polar unwrap the iris image I:

Ip(r, θ) := I(a+ r · cos(θ), b+ r · sin(θ)) (1)
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2. The resulting image is convolved with a set of oriented Gabor kernels (λ =
8π, ψ = π

2 , σ = 2, γ = 0.1 and θ ∈ {− 9π
16 ,−

π
2 ,−

7π
16 } taking the maximum

response for the first iteration, the second iteration used a single kernel with
θ = −π

2 , σ = 6, γ = 1 only):

g(x, y) :=
γ

2πσ2
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(
−x

′2 + γ2y′
2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
(2)

where x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ).
3. For a set of equidistant polar angles (i.e. corresponding to the polar image

width), the three best vertical filter responses are used for clustering r-values
using the k-Means clustering algorithm implemented in OpenCV. The next
step determines within each cluster C the best candidate for each polar angle
in the set evaluating an energy function E using the distance to the cluster
center c and the convolution result Ip ∗ g:

E(r, θ) := 1− |r − c|
max

(R,Θ)∈C
|R− c|

+
Ip ∗ g(r, θ)

max
(R,Θ)∈C

Ip ∗ g(R,Θ)
(3)

4. The 0.2 and 0.8 quantiles with respect to distance from center are evaluated
and all contour points outside the interval are excluded. Finally, missing
values are linearly interpolated in polar coordinates from their immediate
neighbors.

5. Finally, the contour is fitted with a Fourier series and the result is restricted
to the 3 best complex Fourier coefficients, a technique called Fourier based
trigonometry proposed by Daugman [6].

Typically, after the first iteration of polar boundary detection, detected
boundary curves can be used to derive a better center point C to target cluster-
ing errors. Therefore, Pulling and Pushing as proposed by He et al. [7] is applied
to restore the center point C to its equilibrium within the most pronounced
boundary and the polar detection procedure is restarted a second time.

Another problem found with the existing technique was, that typically, the
less pronounced boundary was largely affected by noise or eyelids. Therefore, the
less expressive boundary is reconstructed from the more stable one, exploiting
that both contours exhibit an almost constant distance. In future work, we are
planning to refine this technique by performing a fitting of the resulting contour
following gradient directions after reconstruction or to perform quality checks,
whether the reconstruction really fits better.

Finally, the resulting boundary curves P and L are subjected to Daugman’s
rubbersheet model, and the resulting iris texture is enhanced using contrast-
limited adaptive histogram equalization [14].

4 Experiments

We evaluate segmentation accuracy by assessing the impact on verification recog-
nition accuracy, i.e. ROC curves plotting false acceptance rate (FAR) versus gen-
uine acceptance rate (GAR), given in Fig. 3, using an existing feature extraction
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Table 1. Segmentation accuracy and processing time per image.

Algorithm
Equal Error Rate (EER) Segmentation Time (ST)

Casia-I Casia-L ND UBIRIS Casia-I Casia-L ND UBIRIS

Pcode 0.74% 28.77% 22.01% 39.65% 0.49 s 1.96 s 2.29 s 0.18 s
OSIRIS 16.40% 14.89% 15.45% 33.51% 3.46 s 6.21 s 6.27 s 2.03 s
Proposed 8.07% 12.90% 19.04% 34.56% 0.18 s 0.46 s 0.48 s 0.11 s

technique. We employ a re-implementation of the feature extraction by Ma et al.
[11] using dyadic wavelet transform to select local minima and maxima above
an adequate threshold in two subbands, yielding a 10240 bit code and Ham-
ming distance for comparison. For rotational alignment issues we applied up to
7-bit circular shifts in each direction. Performance with respect to processing
time is evaluated by means of average segmentation time per image for each of
the employed databases and listed along with Equal Error Rates (EERs, where
FAR = 1 −GAR) in Table 1. Furthermore, we evaluate usability by analyzing
segmentation errors on different databases in Fig. 4.

For experiments we employ 4 different open iris datasets: (1) Casia-I is the
left-eye subset of CASIA-V4 2 set Interval 1332 NIR illuminated indoor images
of high quality (320 × 280 pixel resolution), (2) Casia-L consists of a (left-eye)
subset of CASIA-V4 set Lamp, 1000 NIR illuminated indoor images of more
challenging quality (640×480 pixel resolution), (3) ND is a subset from ND-IRIS-
0405 3, 420 images NIR illuminated indoor images of non-ideal quality (640×480
pixel resolution) , and (4) UBIRIS presents the first 100 classes (817 images) in
UBIRIS-V1 4, highly challenging VW images (200× 150 pixel resolution).

We compared the proposed segmentation approach against the following ref-
erence implementations: (1) OSIRIS5 is an open source iris segmentation system
employing binarization and HT to determine coarsely the pupil region with ac-
tive contours for refinement. (2) Pcode6 is a custom HT-based segmentation
technique, following Masek7. It employs (database-specific) contrast adjustment
to enhance pupillary and limbic boundaries, Canny edge detection to detect
boundary curves and enhancement techniques to remove unlikely edges.

2 The Center of Biometrics and Security Research, CASIA Iris Image Database, http:
//biometrics.idealtest.com

3 Computer Vision Research Lab, Univ. of Notre Dame Iris Dataset 0405, http://
www.nd.edu

4 Soft Computing and Image Analysis Lab, Univ. of Beira Interior, UBIRIS.v1 dataset,
http://iris.di.ubi.pt/ubiris1.html

5 Krichen et al.: A biometric reference system for iris. OSIRIS version 2.01, http:
//svnext.it-sudparis.eu/svnview2-eph/ref syst/Iris Osiris/

6 Pschernig: Cancelable biometrics for iris detection with parameterized wavelets and
wavelet packets, Masters thesis, Univ. Salzburg, 2009.

7 Libor Masek, Peter Kovesi. MATLAB Source Code for a Biometric Identification
System Based on Iris Patterns. The School of Computer Science and Software En-
gineering, The University of Western Australia. 2003

http://biometrics.idealtest.com
http://biometrics.idealtest.com
http://www.nd.edu
http://www.nd.edu
http://iris.di.ubi.pt/ubiris1.html
http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris/
http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris/
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Fig. 3. Impact of segmentation on ROC results using Ma et al. ’s algorithm on (a)
Casia-I (b) Casia-L, (c) ND and, (d) UBIRIS datasets.

(a) (b)

(c) (d)

Fig. 4. Segmentation errors of (left) Pcode, (middle) OSIRIS, and (right) proposed
method on (a) Casia-I (b) Casia-L, (c) ND and, (d) UBIRIS datasets.
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Results on Casia-I indicated a best EER of 0.74% at on average 0.49 sec-
onds segmentation time per image (ST) for Pcode. Since this method is explicitly
tuned to deliver good results for this database and boundaries can well be repre-
sented with circles, this result is expected. The second best accuracy on this set
provides the proposed method with 8.07% EER at 0.18 ST. The open OSIRIS
approach does not provide very accurate segmentation with 16.4% EER at 3.46
ST also a 20 times higher ST than our method. When inspecting the type of
segmentation errors in Fig. 4 made by the algorithms, it is interesting to see,
that OSIRIS frequently makes over-segmentation errors (due to less pronounced
limbic boundaries) while our proposed method reveals some defects in the clas-
sification of pupillary versus limbic boundaries due to circular reflections in the
pupillary center and few over-segmentation errors due to sharp collarettes.

For Casia-L the proposed method is the most accurate one with 12.9% EER
at 0.46 ST, clearly better than OSIRIS (14.89% EER at 6.21 ST) and Pcode
(28.77% EER at 1.96 ST). We noticed, that segmentation systems like Pcode
tuned to specific image type may fail completely, if assumptions do not hold: its
segmentations sometimes fails completely and also many under-segmentation er-
rors occurred due to eyelids. OSIRIS exhibits both over- and under-segmentation
errors. For this dataset the reconstruction method assuming concentric centers in
the proposed algorithm sometimes causes misplaced reconstructed boundaries.
Also misplaced initial centers due to eyelids are critical.

The OSIRIS algorithm being tuned to deliver good results for ICE-2005 also
delivers most accurate results (15.45% EER at 6.27 ST) for ND, as this represents
a superset of ICE-2005. Still, processing takes quite long compared to our method
(19.04% EER at 0.48 ST) and even Pcode (22.01% EER at 2.29 ST). The type
of segmentation errors made by all three algorithms are comparable to Casia-L,
with slightly more stable results provided by OSIRIS.

Finally, in UBIRIS, all three techniques provide unsatisfactory results (OSIRIS
with 33.51% EER at 2.03 ST, the proposed method with 34.56% EER at 0.11
ST and Pcode with 39.65% EER at 0.18 ST). Interestingly, OSIRIS provides
slightly better results, even though it exhibits a systematic error: typically the
outer iris boundary is identified as pupillary boundary, so not irides are used
for biometric identification, but sclera and surrounding eyelids and eyelashes,
which works quite well probably due to the short capturing timespan within
each session. While Pcode again exhibits many complete segmentation fails, our
algorithm estimates the center quite robust, but again boundary refitting causes
some problems.

5 Conclusion

Traditional iris segmentation methods are developed for either VW or NIR im-
ages, in order to benefit from strong assumptions with respect to pupil or sclera
contrast. However, the growing demand for integrated solutions extracting irides
from facial images makes both iris recognition in VW, as well as face recognition
in NIR, active research topics demanding for iris segmentation techniques able to
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process either type of data. In this work we presented an effective technique with
respect to not only accuracy, but also speed and usability, avoiding any over-
fitting. Experiments confirm, that existing segmentation software in the field is
highly affected by the type of iris data.
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