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Abstract

Biometric systems support the task of reliable automatic authentication, which is a key
function for economic transactions in modern society. So far, no universal biometric
modality suitable for all applications has been found. This thesis examines the multimodal
fusion of different modalities using a single high-resolution scan of the human hand as input
and relates existing techniques to a new biometric modality: the human foot. With the
target application of wellness areas and spas, this new modality supports privacy interests
and still provides satisfying accuracy. After an introduction to basic design principles,
related work in palmprint, fingerprint, hand geometry, and footprint-based recognition is
discussed. System modules for sensing, preprocessing, feature extraction, matching and
decision for both implemented prototype footprint and hand-based biometric systems are
described in detail. Necessary modifications due to anatomical differences are proposed
and presented. Finally, a performance evaluation comparing overall accuracy and relative
performance of individual features concludes this work.
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1 Introduction

According to [10], the task of biometric (from Greek bios-life, metron-measure) systems
consists of determining the personal identity based on his or her distinguishing physio-
logical and/or behavioural characteristics (in the majority of cases both properties are
addressed [21]). While the term “biometric” may also refer more generally to the appli-
cation of mathematics and especially statistics to biological sciences, this work explicitly
concentrates on the information technologic aspect focusing on authentication tasks. In
order to recognise a person, a biometric software extracts a machine-readable represen-
tation of physiological and/or behavioural characteristics of that person, called feature
vector or template [52], to facilitate score-based matching with stored templates in mem-
ber databases. From this point of view, biometry is an important pattern recognition
research problem [11]. Using hand or footprint-based measurements constitutes one of
many different possibilities to realise biometric authentication. The term multimodal in
the title implies that multiple evidences of the same identity are provided using not only
a single biometric indicator but merging the information of multiple matchers in order to
improve accuracy [32]. Biometric fusion is a common method to cope with unsatisfactory
recognition rates or performance of unimodal systems [21]. While most multimodal bio-
metric systems incorporate multiple sensors, this work operates on optical single-sensor
output and may therefore be classified as a fusion system integrating multiple represen-
tations and matching algorithms for the same biometric, according to [14]. Finally, the
term recognition in this work refers to both verification (1 : 1 comparison with a claimed
identity template) and identification (1 : n comparison to find a matching template, if
existing), as is used in respective literature [1, 21].

The research field of biometrics has seen an enormous growth in the last decade. Thus,
numerous biometric identifiers emerged exhibiting certain strengths and weaknesses with
respect to specific biometric applications. Whilst biometric patterns (fingerprint carvings)
are present on archeological artifacts of the Neolithic age (8000− 7500 B.C.) [21], modern
biometric literature has its roots in criminal investigations with Alphonse Bertillon being
the first to use physiological measurements to identify humans in the late 19th century
[11]. In fact many of the techniques employed in biometric systems today, like fingerprint
classification or the well-known minutiae features in fingerprints by Francis Galton, date
back to the industrial revolution period of the late 18th and early 19th centuries [21].
Finally, another milestone for biometrics was constituted by the development of the au-
tomatic fingerprint identification system (AFIS) in the early 1960s [21]. Today, criminal
applications are just one example where biometric measurements are employed. The mar-
ket of civilian and governmental applications is constantly growing, as can be seen from
the Biometric Market Report conducted by the International Biometric Group [47]: the
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1 Introduction

industrial revenue of 3012.6 million US-Dollars in 2007 is expected to double in the next
four years. The most common modalities ordered by market share according to this study
are: fingerprint (25.3% and 33.6% AFIS), face (12.9%), iris recognition (5.1%), hand ge-
ometry (4.7%) and voice (3.1%). This picture has not changed drastically in the last five
years, but numerous other modalities (vein and ear, for example) have been increasingly
applied and multibiometric systems have emerged.

1.1 Assignment of tasks

The primary aim of this work is to relate traditional biometric characteristics (called
biometrics or - when considered as a type of biometric systems - modalities [52]) targeting
the human hand, or parts thereof, to a new biometric modality: the human foot. This is
pioneering work, as footprint-related measurements have largely been neglected in existing
literature up till now, at least for image-based approaches targeting authentication. In
order to meet the required accuracy of 0.1% False Match Rate (FMR, the rate of falsely
as genuine classified imposters) at 0.1% False Non-Match Rate (FNMR, the rate of falsely
as imposter classified genuine users) for the authentication task (according to [11]), a set
of different matchers has to be employed relying on foot shape and texture.

Another aspect of this work is to examine fusion improvements combining palmprint,
hand geometry and fingerprint identifiers in a single-sensor multibiometric environment.
While fusion may also be used to combine hand and footprint images (multiple biometrics)
to achieve even better results, the work concentrates on loosely coupled (i.e. biometric
classifiers are not combined at feature extraction level, but at the confidence or abstract
level [21]), distinct hand and footprint multiple matcher scenarios (see [14]).

In order to evaluate system properties, including accuracy and performance, prototype
systems for both hand- and footprints have been implemented. Some parts of this thesis
focusing on the employed techniques for footprint-based recognition have already been
published [38, 39]. This thesis presents all design aspects and also addresses target appli-
cations.

1.2 Motivation

Considering biometrics in general, its role in society is becoming more and more important.
It is interesting to see that, despite the possibility to classify and identify animals or plants
as well, the biometrics community almost exclusively concentrates on personal recognition
of humans. This is mainly caused by its primary applications: in Austria and many more
countries, every human has legal capacity (§16 ABGB). For the execution of economic
transactions, crossing of international borders and many more civilian applications, a
reliable personal identification is inevitable. Traditional token-based methods via passport,
credit cards, etc. and knowledge-based identification using personal identification numbers
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1.2 Motivation

or passwords, for example, have proven their worth in many applications [1]. However,
a major drawback of these methods is constituted by the fact that holding tokens or
passwords does not necessarily imply legal ownership. Both theft and fraudulently passed
tokens (such as entry tickets) or knowledge may be undesired. Negative recognition (i.e.
screening people against a database of members) relies on methods eliminating a person’s
ability to claim multiple identities and thus only works with biometrics [21], or at least
demands fraud resistant tokens. Biometry facilitates personal identification in several
ways [21]:

• Permanence and independence of tokens and knowledge: a biometric feature as a
part of an individual may neither easily be lost without intention, nor forgotten like
passwords;

• Singularity: for many features, like the iris or fingerprints, there is evidence that
each person has unique characteristics;

• Efficiency and user convenience: biometric systems enable large throughput for
access control and high accuracy at low cost and are thus being increasingly adapted
for civilian and governmental applications.

However, its first property also implies a significant security threat, when, for example,
sensitive biometric data may be compromised. This is especially true for biometric features
which may be generated out of publicly available data. In contrast to traditional security
mechanisms, biometrics do inherently not support key replacement [21], meaning that a
biometric can not easily be switched as in the case for keys in cryptographic environments,
for example. Therefore, it is in each user’s interest that private biometric features (such
as retina or even fingerprints) are not compromised. There is currently research going
on in the field of cancelable biometrics (see [31]) separating immutable biometric features
from the identifiers used for authentication. Taking the diversity of existing biometrics
into account, another approach to alleviate this problem is to apply not the most secure
biometric for each application but keeping in mind each user’s privacy interests. Less
secure biometrics become viable alternatives, if the risk of imposter attempts is expected
to be low, or when the number of enroled members is guaranteed not to exceed a small
amount.

No biometric is considered optimal in a sense that it meets requirements of all applications
[14]. For this reason, this work examines footprint-based biometrics as a new emerging
alternative as access control in wellness domains, spas or thermal baths, for example,
and compares its performance to state-of-the-art hand geometry, palmprint and finger-
print techniques. Since footprints are not intended to support large-scale high security
applications, such as electronic banking, the storage of features does not necessarily imply
security threats. On the other hand, due to the practice of wearing shoes, it is difficult for
imposters to obtain footprints for forgery attacks. Thus, footprint-based recognition may
also be an alternative for highest-security applications.

Finally, single-sensor multimodal hand biometrics is expected to provide very high match-
ing accuracy without the need of additional hardware for each employed modality. This
alleviates user instructions for biometric sample capture, saves image acquisition time
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1 Introduction

[34], and, using commercially available flatbed scanners as input sensors, provides a cost-
effective solution for large-scale decentralised biometric applications.

1.3 Contributions

This thesis examines personal single-sensor hand and footprint-based multimodal biomet-
ric verification and identification consolidating multiple sources of information.

The main contribution of this thesis to existing work is a newly developed footprint-based
authentication system with a target application in wellness areas and spas. In contrast
to existing pressure-based approaches, an image-based solution is proposed using high-
resolution image-data of the human sole, which permits even higher recognition accuracy.
Its evaluation uses a database of 32 volunteers, which is at least twice as large as existing
approaches. The same features are also applied to the human hand and evaluated using a
unique database of 86 people collected at the Department of Computer Sciences, University
of Salzburg, Austria.

Second, due to uniform recording conditions (both hand- and footprint images were col-
lected from the same user background using the same sensor and similar recording con-
ditions), it conducts a fair comparison between both modalities. Finally, this thesis em-
ploys commercially available flatbed scanners for multimodal biometric recognition, thus
enabling a wide use in existing systems (e.g. for criminal prosecution) without further
hardware requirements.

1.4 Outline

Since many of the techniques to design and implement a biometric system are quite similar
in hand and footprint-based biometrics, this thesis is not split into two parts for each of
the different modalities. Instead, it is structured according to the different layers in a
biometric system and points out the differences between hand- and footprint-based systems
and necessary adaption for each of the employed processing steps.

The first part of this work, starting with Chapter 1, motivates biometric systems in gen-
eral and hand- and footprint-based biometrics in particular. The goals of this work are
identified and contributions are marked out. Mathematical notations are clarified and an
outline of the thesis’ structure is given.

In order to get in touch with the challenges of biometric system design, Chapter 2 presents
architectural design, biometric system properties and performance evaluation measures of
the implemented multimodal authentication systems. Related work in different hand-
specific modalities, i.e. hand geometry, fingerprint and palmprint techniques, as well as
related work in foot biometrics concentrating on pressure-sensing devices is introduced.
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An overview of multimodal systems and the proposed systems’ architecture concludes this
chapter.

Chapter 3 examines existing sensors’ properties for each of the modalities and legitimates
sensor choice for this work.

Preprocessing steps for hands and feet are quite different and at the heart of the problem
of normalisation of input samples. These steps are essential for the reliable extraction of
biometric features and presented in Chapter 4.

The technical mapping between (normalised) input images and the compressed represen-
tation as a template is described in Chapter 5, introducing the set of implemented features
for hands and footprints. All necessary modifications to employ each of the measures to
both modalities are discussed.

Matching and decision functions for biometric templates are presented in Chapter 6. This
also includes score normalisation and fusion mechanisms.

Chapter 7 introduces experimental setup and results concerning accuracy and performance
of the introduced systems in verification and identification mode. Furthermore, it com-
pares hand- and footprint-based recognition performance and analyses biometric system
properties.

After a discussion of test results in Chapter 8, this thesis concludes with a summary of
the main ideas and an outlook on potential future work.

1.5 Notations used

For the easy reading of mathematical structures in this work, different fonts are used in
order to avoid ambiguities:

• Letters in italics or Greek symbols symbolise scalars, e.g. a, b, c or α, β, γ;

• Points in 2D are denoted by bold capital letters, e.g. A,B,C;

• Sets are denoted in calligraphic font: A,B, C. The set of natural numbers is denoted
by N, reals are referred to as R;

• The Gothic type is used to refer to matrices for capital letters and vectors for lower
case letters, e.g. A,B,C and a, b, c. Indices are used to identify vector coordinates:
a = (a1, . . . , an);

• Functions are denoted by capital letters in italics, e.g. F : R → R or also by
lower case letters in italics, if no misunderstanding is possible: f, g, h. Sequences
as special forms of functions may also be referred to as 〈an〉 for the sequence
〈a1, a2, a3, . . . an, . . .〉.
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2 Biometric system design

When designing biometric systems, a number of questions need to be addressed, such as
comparison mode (verification vs. identification), operational mode (automatic vs. semi-
automatic), the selection of one or many modalities according to the needs of the applica-
tion and hardware for sensing these modalities [21]. The awareness of the target application
is crucial for the design of biometric systems. In the case of hand- and footprint-based
systems, it is important to notice that evidently their target applications may be quite
different. While multimodal hand-based biometrics perfectly fits into the mainstream of
authentication applications, foot biometrics is too time-consuming in environments where
users have to take off shoes first. Thus, the explicit definition of a target application for
foot biometrics is needed. A good way to identify target applications is to formulate con-
ditions on application domains. When the domain is found, it can be classified according
to characteristics introduced by Wayman [40] (namely cooperative vs. non-cooperative,
overt vs. covert, habituated vs. non-habituated, attended vs. non-attended, standard vs.
non-standard, public vs. private, and open vs. closed), that further help to justify the
selection of specific features.

The first question arising naturally when dealing with new modalities, such as footprints,
is “Why do we need a new modality?”. There are many accurate techniques and foot
biometry has largely been neglected so far, so the answer to this question is not obvious.
However, when privacy interests of users are considered, footprint-based authentication
might be the right choice, since it is not employed in high-security applications. Second,
foot biometrics is closely related to hand geometry, palmprint and fingerprints. Many of
the biometric techniques using the human hand or parts thereof can be translated to this
new domain. In contrast to hand geometry, a footprint-based identification system may
be implemented in covert mode (i.e. without awareness of the user that the biometric is
taken [40]), if certain prerequisites are met (such as in environments where users walk on
bare feet). It is, in fact, the only known covert biometric without being captured at a
distance. To identify target application domains for footprint-based authentication, the
following prerequisites should be met:

• low throughput should be avoided by choosing environments, where users al-
ready walk on bare feet;

• unhygienic recording conditions should be avoided;

• large space for the sensor has to be provided, i.e. foot biometric sensors can not
be integrated into small devices (such as PDAs, notebooks);

• privacy interests should justify the selection of footprints as the identifier of choice.
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2 Biometric system design

Wellness areas, public baths, spas - areas where users do not wear shoes or socks - are
ideal applications that can be derived from the restrictions above. For systems preventing
unpaid access to fee-paid areas, footprint capture can be executed in front of barriers - pos-
sibly underwater - supporting both prepaid and pay-per-entry schemes. In contrast to the
mainstream of cooperative, overt, habituated, attended enrolment and non-attended recog-
nition, standard environment, closed and private applications [21], footprint-applications
are generally non-habituated and may be covert.

2.1 Identification versus Verification

In the following section a more formal treatment of biometric authentication systems will
be given, see also [1, 21] for extensive overviews. All biometric systems make use of a
database:

Definition 2.1.1 (System database). Let M denote the database of enroled members,
M := {m1,m2, . . .mm}. Each member mi ∈M is characterised as a tuple mi := (i, ii) for
i = 1, . . . ,m where i is the member’s label (e.g. user ID) and ii the stored feature vector
(template).

Within a biometric system, a separate module exists, which extracts feature vectors out
of biometric samples:

Definition 2.1.2 (Feature extractor). Let X be a biometric sample within a universe of
samples X , a feature extractor is a function E : X → F , which maps each sample X to
its feature vector representation x ∈ F within the feature space F . Let E1, E2, . . . , Ei, . . .
denote different feature extractors.

Two feature vectors are matched by the corresponding Matcher:

Definition 2.1.3 (Matcher). Given two feature vectors x, y, a matcher is a function
S : F × F → R returning a similarity score S(x, y). Different matchers are denoted
as S1, S2, . . . , Si, . . ..

According to [1], such a system may be run in two different modes:

1. Verification: Users utilise IDs, cards or other external knowledge- or token-based
unique identifiers to present their identity to the system and prove their legal us-
age through an instantaneously acquired biometric feature. Therefore the acquired
biometric sample is compared to the stored reference template associated with the
referred identity in the user database (one-to-one comparison) using some predefined
threshold η, see also [14].
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2.1 Identification versus Verification

Definition 2.1.4 (Verification system). Given a biometric sample X ∈ X and a
claimed identity i ∈ {1, . . . ,m}, a verification system is a function V : X ×M →
{genuine, imposter} determining whether the claim is true by returning the class
genuine or whether the claim is false by returning imposter , based on a threshold η:

V (X,mi) :=
{

genuine, if S(E(X), ii) ≥ η;
imposter , otherwise.

2. Identification: Only the acquired biometric sample is used for reliable determina-
tion of the identity of the access claiming person. Thus, screening against all stored
reference templates (one-to-many comparison) is needed, see [14].

Definition 2.1.5 (Identification system). Given a biometric sample X ∈ X , an
identification system is a function I : X → M ∪ {reject} determining the identity
mi, i ∈ {1, . . . ,m} if existing or the state reject in case of no suitable identity can be
determined:

I(X) :=

 mi, if i = arg max
j
{S(E(X), ij)} ∧ S(E(X), ii) ≥ η;

reject, otherwise.

Apart from this definition of identification systems, the following variants exist [1]:
sometimes the whole set of matching identities, i.e. the set {mi : S(E(X), ii) ≥ η},
is considered (threshold-based identification). Another variant, not necessarily based
on scores, is rank-based identification where the matcher is expected to return a
fixed size k-dimensional ranking vector (mπ(1),mπ(2), . . . ,mπ(k)) with π a permutation
of {1, . . . ,m}. Finally, there are also hybrid approaches returning a variable-sized
ranking vector of maximum length k containing only templates exceeding the defined
threshold.

It is clear, that running systems in identification mode is more challenging for the following
reasons:

• Security: System error rates largely depend on the number of enroled members.
This circumstance is illustrated by the following experiment: assuming a system
operates at 0.1% False Accept Rate (FAR, the rate of falsely accepted imposter
authentication attempts) with a member database size of n = 250, a single imposter
trying to cheat the system will be lucky in approximately 1 − 0.999250 ≈ 22.13%
of the cases (assuming a simplified model with equal FAR for each identity in the
system database [1]). However, using a database size of n = 2500 the probability of
being falsely accepted increases to 91.8%;

• Performance: The number of necessary comparisons increases with the number
of enroled members. Large databases, such as the FBI Integrated Automated Fin-
gerprint Identification System [48] with fingerprints of over 47 million subjects as of
July 2007, need fast matching algorithms in order to be able to respond in reasonable
time.
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2 Biometric system design

2.2 System properties

Depending on application, desired security and fault tolerance, a variety of different bio-
metric features may be recorded. Accuracy is only one out of many quantifiable mea-
surements used for the selection of a particular technique. As most biometric applications
demand real-time capabilities, processing performance is also an important issue [13]. The
following section gives an overview of common biometric system properties by means of a
comparison between footprint-based biometrics and traditional approaches which can be
accomplished.

For biometric system assessment a number of properties can be identified [14]:

• Universality: the availability of characteristics for each person in order to minimise
the Failure To Acquire (FTA) rate, i.e. the rate a biometric system is unable to
acquire or extract biometric templates from a person of the target population [52].

• Distinctiveness: singularity of biometric characteristics caused by genetic diversity
as well as random processes affecting the development of the embryo [12] largely
affects inter-personal variability. For distinctiveness performance assessment often
twin studies like [12] are conducted.

• Permanence: biometric characteristics are permanent, if they are not subject to
change over long periods of time. Changes in weight, for example, may influence
pressure-based footprint features. Ridge-based fingerprint features are known to
remain stable according to empirical observations [21].

• Collectability: biometrics are expected to alleviate authentication and thus de-
mand easily measurable and quantifiable characteristics. Usually, biometrics with
high collectability (face, signature or hand geometry) also show high acceptability
[10];

• Performance: such as computational or resource demands of the system. Inspect-
ing biometric system assessment in [10], a tradeoff between performance and accept-
ability can be identified legitimating the diversity of biometrics;

• Acceptability: negative associations using a particular biometric are usually unde-
sired. However, sometimes high uniqueness comes at the cost of lower acceptability,
like for iris, retinal scan or fingerprint biometrics [10] due to more complex acquisi-
tion, association with criminal investigation and privacy issues;

• Circumvention: it should be impossible for intruders to defraud the biometric
system. For some biometrics, like signature or face, this is hard to achieve.

Another differentiating factor, according to [21], is whether the biometric is dynamic
(a behavioural characteristic is recorded, e.g. gait, voice print) or static (physiological
features such as iris, face, etc. are recorded). For some biometrics, such as signature,
both dynamic and static features may be analysed. This thesis concentrates on static
image-based systems examining hand- and footprint-based biometrics. An assessment of
these properties for hand- and footprint-based biometrics is found in Table 2.1.
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2.3 System performance

Modality Universality Distinctiveness Permanence Collectability Performance Acceptability Circumvention

Hand geometry medium medium medium high medium medium medium
Palmprint medium high high medium high medium medium

Fingerprint medium high high medium high medium medium
Soleprint medium medium medium low medium medium medium

Foot geometry medium medium medium low low medium medium
Ballprint low high medium low medium medium medium

Table 2.1: Comparison of hand-based (in: Jain et al. [14]) and footprint-based biometric
technologies (according to the author’s perception).

In the early stages of biometric research these properties characterised existing systems
very well. Today, due to the diversity of existing algorithms, they can rarely be used to
predict or classify the performance of a specific system. Using common fusion techniques
it is possible to incorporate multiple matchers into a single biometric system yielding
higher performance than each of the single biometrics [32]. Furthermore, techniques like
cancelable biometrics influence acceptability.

2.3 System performance

Concrete biometric systems are assessed using statistical error analysis. There are a num-
ber of errors made by biometric systems, which need to be understood and estimated
before a particular biometric is selected for application. Since various error types depend
on the formulation of hypotheses, I clearly state the examination of positive authentication
in both verification and identification mode.

A verification system has to classify the inputX into one of two classes, i.e. given a claimed
(enroled) identity M it decides which of the following (null and alternate) hypotheses is
true [21]:

H0 : X ≡M, i.e. both templates refer to the same person; (2.1)

Ha : X 6≡M, i.e. the templates do not refer to the same person. (2.2)

Consequently there are two errors this type of a verification system can make [1], namely
false accepts and false rejects.

Definition 2.3.1 (False Accept). False accepts refer to deciding H0 is true, while in reality
Ha is true (an imposter is accepted by the system). The relative frequency of this error is
called False Accept Rate (FAR).
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Definition 2.3.2 (False Reject). False rejects refer to deciding Ha is true, while in reality
H0 is true (a genuine user is rejected). Again, the rate at which a false reject occurs is
called False Reject Rate (FRR).

Occasionally in literature, the expressions False Match, False Non Match with the cor-
responding rates False Match Rate (FMR) and False Non-Match Rate (FNMR) are used
as a synonym for False Accept, False Reject. In a strict sense, there exists a difference
between FMR/FAR and FNMR/FRR, namely: FAR,FRR (a) refer to pattern recognition
terminology [1], frequently used in positive authentication scenarios; (b) also include errors
specific to biometrics, such as the FTA [22] and; (c) refer to hypotheses, not subjects [1].
Unless otherwise specified the rates in this work will not include the Failure to Acquire
Rate, i.e. the FMR,FNMR rates are employed.

In should be pointed out, that both FMR and FNMR depend on the current system
threshold η. In fact, it is possible to achieve an arbitrarily low FNMR at the cost of higher
FMR and vice versa. A good selection of η ideally separates the score distributions of
genuine and imposter authentication attempts. However, this yields a tradeoff between
security (demanding low FMR) versus convenience (requiring low FNMR) [21]. Suitable
choices for η are visualised in genuine and imposter score distributions (see Figure 2.1).
Inspecting the genuine score distribution P (s|H0) and imposter score distribution P (s|Ha)
of a biometric system, FMR and FNMR for any fixed system threshold η can be estimated
as follows (see [21]):

FMR =
∞∫
η

P (s|Ha) ds; (2.3)
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2.3 System performance

FNMR =
η∫

−∞

P (s|H0) ds. (2.4)

The selection of an arbitrary operating point, i.e. tuple (FMR,FNMR)η of FMR and
FNMR values for some fixed threshold η, is typically insufficient for comparison. Instead,
different algorithms are compared using the set of all possible operating points depicted
in the form of a Receiver Operating Characteristics (ROC) curve [1] (see Figure 2.2).
Alternatively, for performance comparison the following indicators are frequently adopted
(see also the Fingerprint Verification Competition 2006 [50]):

• Equal Error Rate (EER): the value such that FMR = FNMR;

• Zero False Match Rate (ZeroFMR): the lowest FNMR for FMR = 0%;

• Zero False Non-Match Rate (ZeroFNMR): the lowest FMR for FNMR = 0%;

• Minimum Half Total Error Rate (MinHTER): the global minimum value of the
following function [30]:

HTER(t) := FMR(t) + FNMR(t)
2 . (2.5)

As can be seen in Figure 2.2, each of these performance indicators refers to a single point in
the ROC curve: PEER is the intersection of the ROC curve with the first median and cor-
responds to the EER indicator. Analogously PZeroFNMR and PZeroFMR refer to ZeroFNMR
and ZeroFMR and can be identified as intersections of the ROC curve with the y-axis (and
x-axis respectively) with closest distance to the origin. Finally, PMinHTER corresponds to
the operating point where the half of the sum of coordinates is a minimum.

It should be pointed out that, for identification systems, the situation is slightly different.
Here, using the notions above, the hypotheses could be reformulated as follows:

H0 : ∃M ∈M : X ≡M, i.e. there exists an enroled template with the same identity;
(2.6)

Ha : ∀M ∈M : X 6≡M, i.e. within M no template with the same identity exists. (2.7)

Within this context, a False Accept occurs, if X is found to be matched with a template
of an enroled member mi ∈ M, while in reality it is an imposter and False Rejects
denote falsely rejected genuine authentication attempts. Matching with multiple (correct
or incorrect) candidates is ignored in this case.
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2.4 State-of-the-art in Hand biometrics

Concerning the hand-based recognition part of this work, not only a single biometric
modality is of relevance, but three common modalities extracted out of geometric and
textural physiological properties of the human hand [14]:

• hand geometry extracting local measurements (such as finger lengths, palm width,
etc.) out of a (binary) image of the whole hand;

• palmprint focusing on position and orientation of principal lines and;

• fingerprint extracting the flow of ridge patterns in the tip of the finger.

Additionally, palm vein patterns extracted from infrared palmar images were introduced in
2002 [44] as a new distinct type of biometric authentication. All techniques have distinct
biometric properties and are aimed at different applications. Different sensing devices for
each of the modalities have emerged [21, 44].

The human hand soon appealed to biometricians due to its high accessibility. In the
meantime, more sophisticated techniques have emerged yielding extremely low EERs (e.g.
iris recognition systems), however hand-based features are still one of the most com-
mon biometrics used today. While a variety of different hand-biometric systems (such
as [18, 35, 42]) already exist, whole-hand-based systems, scanning the entire hand to ex-
tract multiple features, are not yet common. The fusion of hand geometry, palmprint and
fingerprint biometrics in a single sensor environment has been proposed by [19] and an im-
plemented solution has recently been presented by [34]. Nevertheless no implementation
is known to the author working with commercially available scanners so far. However,
results using randomly paired samples, as is done in [19] seem promising. Using sim-
ple fusion techniques, recognition rates of single biometrics with EERs of 8.54% (hand
shape), 11.06% (palmprint) and 11.4% (fingerprint) could be improved to 3.53% (hand
shape + palmprint + fingerprint). Using multi-spectral scanning methods [34], even higher
accuracy can be achieved. However, unfortunately the lack of standardised testing con-
ditions regarding population size, performance indicators, time lapse between recordings,
and even operation modes makes fair comparisons between hand geometry, palmprint and
fingerprint systems difficult. Typical state-of-the-art error rates associated with the intro-
duced techniques can be found in Table 2.2. It should be clear that error rates also heavily
depend on the type (and supported area) of input sensor used (e.g. thermal, optical or
capacitative in case of fingerprints) and whether the algorithms performance tests have
been executed by third parties. For example, in the FVC2006 [50, 3] the best reported
EER results in the open category are 0.021% EER for the optical sensor versus 5.564% for
a different database with an electrical field sensor. This implies, that it is even more dif-
ficult to compare different biometrics. Therefore, the conducted performance comparison
in this work is fair in terms of sensor (all feature extractors are provided with the same
sensed information and may discard different parts of the hand) and population (all tests
refer to the same group of users).
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2.4 State-of-the-art in Hand biometrics

Type Reference Description Samples FMR FNMR Indicator

Geometry
Kumar et
al. [18]

4 finger lengths, 8 finger
widths, palm width, palm
length, hand area, and
hand length

1000 5.29% 8.34% MinHTER

Geometry
Yoruk et al.
[43]

independent component
features of the hand
silhouette images

458 2.77% 2.77% EER

Palmprint
Kumar et
al. [18]

standard deviation of grey-
levels in 144 overlapping
blocks

1000 4.49% 2.04% MinHTER

Palmprint Zhang [44]

phase information of dis-
crete Gabor Filter convo-
luted with palmprint sub-
image

425 0% 2.5% ZeroFMR

Palmprint Zhang [44]

projection of 128 × 128
sub-image onto eigenspace
spanned by 100 eigenvec-
tors (Eigenpalm approach)

3056 0.03% 1% FMR ≈ 0

Fingerprint

FVC2006
DB2 open
winner [50]

anonymous algorithm on
400× 560 (569 dpi) optical
sensor data (BiometriKa)

1680 0.02% 0.02% EER

Table 2.2: Error rates of recent hand-based biometric systems in verification mode.

All hand-based systems have the following major limitations in common: Firstly, most
systems are overt, i.e. acquisition is an evident and cooperative process. Secondly, cap-
ture takes place with the subject nearby and often well-defined environmental conditions
(such as e.g. lighting) are required. Finally, limitations concerning universality exist. The
inability to acquire features may be caused by serious infringement (e.g. land mines),
congenital physical anomalies (e.g. polydactyly causing supernumerary fingers or der-
matopathia pigmentosa, a disorder causing a lack of fingerprints), or even inappropriate
hardware unable to deal with extreme shape.

2.4.1 Hand geometry

Hand geometry systems have been implemented since the early 1970s [13] and target the
extraction of the silhouette shape of the human hand or single fingers, finger lengths and
local widths. Measurements can easily be extracted from low quality scans or camera
images of the hand with resolutions starting at 45 dpi [43], as no textural information is
involved. Shape-based features are invariant under environmental factors such as lighting
conditions, sweat, dry skin or small injuries, however they may change over larger time
spans, especially during growth [14]. Another difficulty is constituted by the physical
anatomy of the human hand. If fingers touch each other, salient points [28] needed for
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reliable finger segmentation can not be extracted reliably. Most hand geometry detection
will fail for users having their fingers closed or with physical anomalies, such as polydactyly.
Although hand geometry measures do not vary significantly across different people [14],
they can nevertheless be used for the verification task and to improve system accuracy
using fusion. Therefore, three different algorithms from the class of geometric features will
be employed in this work for multimodal hand-based biometric recognition: a contour-
based approach, an algorithm targeting lengths of fingers and a shape-based feature.

2.4.2 Fingerprint

The modern fingerprint technique dates back to the 16th century, but it was the under-
standing of the following biological properties by Edward Henry in 1899, which led to the
success of fingerprint recognition [21]: firstly, epidermal ridges form individual character-
istics (fingerprints are part of an individual’s phenotype); secondly, fingerprints may be
classified according to configuration types and finally, minutiae landmarks and ridges are
expected to be permanent (fully formed at about 7 months).

Typically, fingerprint matchers analyse features at a specific level [21]: Level-1 fingerprint
features (also known as global level features) track singular points (loops and deltas), can
be extracted out of greater than 200 dpi resolved input images and allow coarse matching.
Level-2 features are extracted at the local level starting at 350 − 500 dpi and consist of
local ridge characteristics, so called minutiae points (Bifurcation and Termination points).
Finally, Level-3 features refer to sweat pores which can be identified in very highly resolved
input images (at greater than 1000 dpi). Most fingerprint systems are minutiae-based,
but there are also correlation-based and ridge feature-based (based on ridge orientation,
texture, etc.) matchers, which are generally more tolerant to low quality input [21]. They
are the feature of choice if the overlapping area between template and sample is relatively
small.

In this work, NIST’s NFIS [51] minutiae-based extractor mindtct and bozorth3 matcher
for fingerprint matching of each individual finger is applied. Other prominent algorithms
may be found in [50]. Compared to other biometrics, fingerprint recognition exhibits rela-
tively high performance and is shown to be distinctive, even for twins [12, 14]. Drawbacks
of fingerprint technology are its high resolution requirements (for fingerprint storage a
specific compression technique - Wavelet Scalar Quantization - became the FBI standard
[21]), associations with criminal prosecution, and universality issues (so-called goats refer
to unusable fingerprints [21]).

2.4.3 Palmprint

Palmprint recognition refers to the region of the human hand between the fingers and the
wrist and exploits many of the same characteristics as for fingerprint recognition. There-
fore, it shares many of its permanence and distinctiveness properties. A first application
of palmprints was fortune telling and health diagnosis in China, starting in 1000 B.C. [44].
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As an alternative to signatures for people unable to write their name, inked palmprint im-
pressions were used systematically in 1858 by Sir William Herschel in India for workers to
sign contracts [53]. After an integration of palmprints into AFIS systems starting in 1994,
the largest available database of palmprints (in Australia) contains 4.8 million templates
[53]. It is interesting to note that despite the fact that every third latent print is from a
palm and not a finger [53], there are far more fingerprints stored (the FBI card archive
already contained 200 million prints by 1995 [21]).

The palmprint pattern consist of the following elements [44]:

• thick flexure lines (or principal lines with its main lines life line, head line and heart
line), which form individual patterns and close during gripping;

• tension lines (or wrinkles) providing elasticity to the skin and;

• papillary lines (or ridges) forming the structural outermost part of the epidermis.

In addition to delta-point-based, minutiae-based, correlation-based and ridge feature-based
features like in fingerprint systems [53], the following measures may be extracted [44]: ge-
ometrical features (such as width, length or area), principal line features (i.e. location and
form of life, head and heart lines), wrinkles (location and orientation), and datum points
(end points of principal lines). This work focuses on a generic correlation-based approach
estimating the difference between two aligned palmprint image textures, since these mea-
sures can be extracted fast and reliably even in poor quality images and do not require
high resolutions. One technique with low error rates is correlation-based filters designed to
produce outputs with high amplitude at the origin when correlated with an image belong-
ing to this class and a lower-energy plane without significant peaks when correlated with
a different class [7]. However, they demand multiple training images to generate the filter
and some target applications require enrolment using a single input image. Therefore, a
more generic approach, as in [18], is selected for this work. Another employed palmprint-
based technique frequently used in face recognition [44] is the Eigenpalms feature (and
Eigenfaces for face images respectively [37]). Based on principal component analysis it
exhibits very low error rates (see Table 2.2) and does not need high-resolution input. This
feature will be applied for both palms and individual fingers.

2.5 State-of-the-art in Foot biometrics

Foot biometry is still an open research topic. Even though foot biometry bears similar
distinctive properties to the human hand, it has so far not been considered as a feature in
non-forensic applications, for example in authentication systems. In contrast to hand bio-
metrics, foot biometry is rarely used in commercial applications for a number of reasons:
non-habituated environment, non-user-friendly data acquisition and, finally, issues regard-
ing the hygienic capture of footprints. Furthermore, in some countries, it is considered
offensive to show someone the sole of your foot. However, with the target environment
of spas and thermal baths, footprint-based authentication might be a useful alternative,
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Type Reference Description Subjects Recognition

Pressure Nakajima et al.
[26] raw image L2-dist. 10 85%

Pressure/Body posture Jung et al. [15] quantised Center of Pres-
sure (COP) 5 97%

Dynamic pressure Jung et al. [16] Hidden Markov Models
(HMM) 11 80%

Table 2.3: Recognition rates of footprint-based biometric systems in identification mode.

since, as a biometric feature, it does not rely on tokens or knowledge for identification. In
order to increase acceptability, proposed image acquisition in this work does not involve
pegs or a specific pre-alignment of the foot on the sensor.

The first medical and forensic investigations related to footprint-based recognition were
conducted in the late 1980s: Kennedy [17] recorded physiological characteristics from
inked barefoot impressions, such as local geometrical features targeting length between
heel and tips of toes, widths at various positions, and distances between optical centers
of heel and toes. Automated recognition systems were introduced by Nakajima [26] in
2000 operating on pressure distribution data obtained by a pressure sensing mat using
Euclidian distance. With this technique, recognition rates of 85% could be obtained. More
recent work by Jung et al. [15, 16] focuses on static and dynamic footprint with Hidden
Markov Models yielding recognition rates up to 97.8% dependent on feature selection and
database size. However, recognition rates in Table 2.3 refer to very small populations: just
5 − 11 people were tracked in experiments. Commercial applications, however, demand
prospective results for larger population databases which are not available right now.
Furthermore, an application domain is missing in existing proposals. For this reason
more elaborate approaches to foot biometrics are investigated, using optically acquired
footprints for feature extraction. Foot biometrics can also be related to gait recognition
concentrating on behavioural characteristics [1].

In this work, I will apply different techniques from hand biometry to the high-resolution
textural image of the sole. Since foot biometry is closely related to hand geometry, finger-
prints, and palmprints, many of the techniques can be translated to this domain. Examples
comprise, but are not limited to, [18, 19, 42, 43, 34]. Measurements from all of the intro-
duced hand-based modalities will also be applied to footprints, including (a) geometrical
characteristics focusing on shape, length and area of the silhouette curve, lengths of toes
and inter-toe angles, local foot widths and; (b) textural characteristics, such as soleprint
features analogous to palmprints, minutiae details on the ballprint and Eigenfeet features
corresponding to Eigenfaces in traditional face recognition.
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2.6 Multimodal biometric systems

In its most demanding forms of application, namely screening (i.e. matching against a
database of wanted persons, e.g. terrorists) and large scale identification (i.e. identification
from a large number of possible subjects, e.g. criminal investigation), biometrics is faced
with the problem of having to guarantee extremely low error rates. Jain et al. [11]
quantified accuracy requirements for matchers as less than 1 ·10−3% FNMR for large scale
identification from 1 million members and less than 1% FNMR for screening from a watch
list of 500 members respectively at 1·10−4% FMR. The main reason for these requirements
is the fact that in identification mode the FMR is approximately linear dependent on the
number of enroled members in the system database [1]. These rates, however, can hardly
be accomplished in unimodal systems and it is even hard to bridge the gap between current
matchers and performance requirements in multimodal biometric systems. Design issues
of multibiometric systems (as introduced in the last 10 years) are discussed in [32, 21, 33].
Multibiometric techniques were introduced by multi-classifier literature (multibiometric
systems may be seen as multi-classifiers over a two-class classification problem [21]) and
have gained enormous popularity in the last decade due to [33]:

• their ability to improve matching accuracy;

• higher flexibility in case of failure to acquire single biometrics and;

• more difficult biometric system attacks (all individual biometrics have to be attacked
at the same time).

Most multibiometric systems today incorporate fusion in multiple unit and multiple bio-
metrics scenarios (see [14]), since these combine completely independent pieces of infor-
mation and thus result in higher matching improvements [21]. The systems introduced
in this work are single-sensor multibiometric systems and are thus, in the sense of [14],
“only” multiple matcher scenarios (and therefore considered to combine strongly corre-
lated measurements in the opinion of [21]). However, features are expected to be largely
independent, when extracted at different resolutions, such as e.g. the global (singular
points), local (minutiae) and very-fine (sweat pores) fingerprint levels, and from different
parts of the input image. Using the latter, one can see that multiple unit scenarios in
[14] may be considered as subsets of multiple matcher scenarios when the input covers
multiple units and is constrained in size for single matchers. This is, in fact, the case in
the proposed system, when fingerprint regions of single fingers are extracted as part of the
preprocessing step and the results of individual units are merged.

Multimodal biometric systems employ fusion strategies to consolidate information. Ac-
cording to [32] fusion may be incorporated:

• at the feature extraction level consolidating multiple independent biometric
feature vectors via concatenation into one single high-dimensional template;

• at the matching score level combining the individual scores of multiple matchers
into one score indicating the similarity between feature vector and reference template;
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• at the decision level via simple majority voting schemes.

Since the employed multimodal fusion strategies are applied at matching and decision
level, see Chapter 6 for further details on these techniques.

2.7 Architecture of the proposed system

Typical multimodal biometric authentication systems, such as [18, 19, 34], for example,
consist of the following five serial modules (which themselves may be further split up into
several processing steps), see also [14, 44]. Sometimes, when preprocessing or fusion is not
executed, the corresponding modules may be missing in the system’s description.

1. Sensor module: This module extracts the raw measurements of the hardware
sensor, such as flatbed scanners, fingerprint readers, cameras, etc.

2. Preprocessing module: Normalising the input signal in order to achieve trans-
lational and rotational invariance is a key task of the preprocessing stage and can
increase recognition accuracy enormously (see e.g. [26] for footprints or [18] for
hand-images). In particular for single sensor multimodal systems, this module is im-
portant, as it may provide several versions of the (clipped) input image for different
resolutions, see [19].

3. Feature extraction module: Within this part of the system the feature vector
is generated from the (preprocessed) input signal. As feature extraction may also
involve further preprocessing tasks, the distinction between preprocessing and fea-
ture extraction module is not always clear. Therefore, both tasks are often merged
within a single module (such as in [1]).

4. Matching module: Having a set of stored templates called member database the
matching module compares the extracted feature vector to one specific template
(verification) or all stored references (identification) and generates a matching score
s for each comparison.

5. Decision module: The task of granting or denying access based on matching scores
is executed by the decision module.

If the system is multimodal, an additional Fusion module has to be integrated. Its position
within the processing chain is dependent on the type of fusion used. The proposed system
design illustrates processing in case of identification and verification, where biometric
templates are matched against each other in order to solve authentication problems. For
the preceding storage of biometric templates into the member database, the so-called
enrolment, the processing chain not necessarily involves matching or decision stages, see
[21]. Instead, multiple (one or more) samples are acquired (possibly under guidance of
humans supervising this process) for each individual to be enroled and a system database
module stores the (averaged) feature vector together with identifying information [14].
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The absolute matching performance of a biometric system largely depends on the intrinsic
properties of its sensor. An example of the variations caused by different input can be
seen in the quite different error rates in the FVC2006 [50] for different sensors, causing a
change of an order of magnitude in EER performance [21]. When selecting a proper sensor
for an online system (i.e. no latent fingerprints, palmprints, etc. are matched, but live
impressions of the human hand and foot), the first question which needs to be addressed
is: “What should be captured?” Generally, concerning 2D impressions of the human hand
and foot there are two possible choices: (a) volar (or palmar for hands and plantar in
the case of feet, respectively) scans, i.e. images referring to either the palm of the hand
or the sole of the foot and (b) dorsal scans, i.e. images of the upper part of the hand
or foot. There are numerous biometric systems providing personal verification based on
hand images which rely on different views of the hand and/or different kinds of sensors.

Another question immediately affected by the choice of an appropriate sensor is: “Can
the sensing device distinguish between genuine and forged sensor input?” If systems are
prone to frequent imposter attacks, it may be necessary to check whether the source of an
input signal is alive or not. This is called liveness detection and may be supported by the
choice of sensor [1]. It is, for example, more difficult to fool thermal sensors than optical
sensors (sometimes even an ink print is sufficient). Also security abilities such as available
encryption for decentralised data acquisition and compression influence the choice of a
proper sensor [21].

Furthermore, there are a set of user interface and optical system requirements [44]. Cap-
turing devices should be intuitive in a sense that users know what to do, even without
instructions. This increases throughput and decreases the number of errors due to im-
proper sensor usage when applied in real-world applications. Real-time capabilities denote
the ability of the biometric system to make the classification decision in an acceptable
time. User throughput of single biometric modalities is analysed by Mansfield [23]. Ac-
cording to this study, mean transaction time for optical fingerprint is 9 seconds (minimum
2 seconds) and for hand geometry 10 seconds (minimum 4 seconds). This is on average
twice as fast than vein and still 30 percent faster than face. However, when using com-
mercially available scanners at high resolutions, it is clear that these throughput rates are
unattainable. Nevertheless, a viable compromise has to be found between accuracy (in
terms of resolution) and response time.

Finally, sensor selection also involves the design of the sensor environment. Design goals
may be to keep noise, caused by the environment or distortions, to a minimum (e.g.
lighting conditions) or to maximise convenience (e.g. footprint-based capture in spas
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using under-water image capture through the use of cameras). For hand and footprint-
based measurements these may mean the use of boxes to minimise environmental light
(e.g. in [34]) or pegs to minimise geometrical distortions.

3.1 Sensor properties

The output of an image-based sensor (sensing hand- or footprints) can be characterised
by the following parameters (see [21] for details on fingerprint images):

• resolution: as measured in dots per inch (dpi). This parameter influences scanning
time and storage requirements. While hand geometry can cope with low resolution
input, fingerprints typically require resolutions greater than 250 dpi (FBI-compliant
scanners are required to operate on resolutions greater than or equal to 500 dpi [21]).
Palmprints are captured at a resolution of approximately 125 dpi [44].

• area: this refers to the (rectangular) size of the supported area. For most commer-
cially available fingerprint- or palmprint-sensors, there is a tradeoff between area and
cost [21]. In case of commercially available flatbed-scanners the situation is different,
as the available area usually corresponds to DIN A4, a common European format for
paperwork introduced by the Deutsches Institut für Normung, at a size of 210× 297
millimeters. While the majority of human hands are expected to be measurable
within this area, footprints deserve further attention. According to a study evalu-
ating foot-related measures conducted by Hofgaertner [8] on 517 industrial workers,
0.2 percent would exceed the available length of 297 mm (a distribution of shoe sizes
is given in Figure 3.1). However, since female feet are generally smaller, the part
of the users being unable to fit within the available area with respect to the whole
population may be even smaller.

• depth: typical values are 8-bit or 16-bit grey-scale and 24-bit or 32-bit colour infor-
mation. Commercially available scanners and cameras usually support both grey-
scale and colour image capture. However, this additional information is ignored
in most fingerprint, palmprint and hand geometry systems [21, 44, 18], although
multi-spectral image sensing (capturing light from different frequencies possibly out
of visible light range) can significantly improve input quality and also support hand
segmentation [34].

• geometric accuracy: this refers to the additional geometric distortion introduced
by the sensor due to mirrors or glass plates [44], for example.

• image quality: image quality may be affected by dirty sensors, improper (too
slight or too intensive) pressure and skin surface (dirt, wet or dry skin). An explicit
image quality measure of sensor input may be desired in order to increase matching
fidelity [27]. For fingerprint scans several quality measures exist (such as quality
maps in mindtct [51], coherence-based quality [27] or more general Signal-to-noise-
ratio (SNR) with respect to the original pattern [21]). However, not only textural
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Figure 3.1: Distribution of shoe size, according to a study of 517 male industrial workers
aged 18−62 (data from: Hofgaertner [8]) and correspondent foot length (data
from: AskNumbers [46]).

quality is essential for the overall performance of a system, but also the ability to
extract a stable hand contour, i.e. the sensors ability to support hand segmentation
separating grey-scale distributions of fore- and background in the hand image.

3.1.1 Hand geometry sensors

In hand geometry, images are usually captured by flatbed scanners or cameras at a low
resolution rate starting at 45 dpi [43]. Hand geometry relies on the reliable extraction of
hand contours, thus both palmar and dorsal hand scans may be applicable. Today, most
systems are palmar, such as [43, 42, 18, 19, 34, 28]. An example of camera-based dorsal
image processing also using the side-view of the hand for geometrical measures is [13].

Typically, hand geometry systems use fixed pegs at specific positions between fingers to
guarantee a proper alignment [13, 35]. But this has a negative effect on user convenience
and collectability. More advanced schemes [43, 42] are peg-free and achieve normalisation
at the preprocessing or feature extraction step. As a result of size limitations and immea-
surability caused by constrained dexterity, some systems only measure the geometry of a
single finger instead of the whole hand [14].

3.1.2 Fingerprint sensors

Fingerprint sensors may be classified according to sensor type (such as optical sensors,
capacitative and thermal solid-state and ultrasound) [21]. While optical sensors use prisms
to sense the difference in light reflectance in order to discriminate between ridges and
valleys, solid state sensors use capacitance measures (ridges exhibit higher capacitance
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than valleys filled with air [53]) or thermal differences. Examples of the generated output
by these different types can be found in Maltoni et al. [21]. Fingerprints acquired by
flatbed scanners exhibit lower contrast between ridges and valleys than special fingerprint
sensors and require additional preprocessing.

Thermal sensors are available as sweep sensors (i.e. the user sweeps the finger across the
sensor line and the fingerprint is reconstructed from overlapping slices) only [21]. Optical,
capacitative and ultrasound sensors are, on the other hand, usually touch sensors. Ad-
vantages of sweep sensors comprise lower hardware requirements (just a single sensor line
is needed) and the absence of latent fingerprints. Drawbacks are additional processing re-
quirements and user training in performing the sweep properly [21]. Available fingerprint
databases for performance tests can be obtained from the Fingerprint Verification Com-
petition (whilst distribution conditions of the latest FVC2006 [50] database are still being
refined, online available data sets of FVC2004 [49] offer 1440 impressions of 12 people for
each of the 4 different sensors).

3.1.3 Palmprint sensors

Palmprint sensors use the same techniques as fingerprint sensors [53], thus the same clas-
sification principles are applicable. The only difference for palmprint sensors is the larger
sensing area covering the 4 different regions of the palm, namely: upper palm, lower palm,
thenar and hypothenar. Since a tradeoff between sensing area and cost exists, they are
more expensive (see Bolle at al. [1] for an overview of sensor cost of different modalities).
The reliable location of the palm within the hand as part of the preprocessing step in-
volves an extraction of the region of interest (ROI) and is frequently achieved using two
fiducial points, i.e. vertices between fingers as origin points for aligning palmprints (e.g. in
[34]). This segmentation process is often supported by acquisition devices using pegs (like
hand geometry systems, see Zhang’s flat platen surface design in [44]). The first online
palmprint capturing device was invented at Hong Kong Polytechnic University in 1999
and acquired real-time palmprint images using a white light source and a CCD-camera
capturing the reflected image of a hand placed on a glass plate [44]. For online and offline
tests, the PolyU database [54] offers more than 7752 grey-scale images corresponding to
386 different palms. The acquired palmprint image obtained by a flatbed scanner is (after
registration) quite similar to PolyU sensor data.

3.1.4 Footprint sensors

Kennedy [17] observed, in his forensic research concentrating on barefoot impressions, that
feet have many weight bearing areas, which leave an imprint in shoes that may be used
for reducing the set of suspects even in the case that no latent ridges are present. This
insight can be seen as the birth of footprint-based recognition and led to the development
of a hand full of pressure sensing devices (consisting of a matrix of sensels) for footprint-
based measures. While some of them are designed as sensing mats, such as the Nitta Big
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Mat (used by [26]) or TechStorm Foot Analyzer (US Patent 6331893, used in [16]), the
Nitta F-Scan (used by [15]) is designed as a shoe inlet. A drawback of these sensors is the
need of segmentation and low resolution. But if texture elements of the sole have to be
sensed, such as is done in this work, users are further required to take off socks. Since this
may be even more inconvenient and would increase transaction time, I propose a specific
application domain, where users already walk on bare feet.

3.2 Proposed sensor

In this work, no specialised biometric sensor is applied, but default commercially available
flatbed scanning hardware, i.e. an HP 3500c (and HP G3010 for test purposes) scanner.
This has several advantages, namely:

• Availability: today, a variety of notebooks are already shipped with appropriate
fingerprint sensors and web cameras, which allow the employment of fingerprint and
face-biometric applications designed to work on these sensors. Scanners are already
widespread - according to a scanner penetration survey by InfoTrends Research
Group Inc. [55] in 2001, every third US household is in possession of a document
scanner and the scanner market in general was expected to be saturated in 2006. This
enables large-scale solutions of biometric measurements via web-based applications,
for example.

• Reproducibility: since no special hardware is used and no emphasis is placed on
the latest technology (a top product has not been selected, but rather a 5-year-old
flatbed scanner model designed for a broad commercial market), results are expected
to remain stable or even improve when better hardware is employed. Experiments
involve untrained users, in order to reflect a realistic capture environment with high
reproducibility.

• Sensor independence: the goal of this work is to examine hand- and footprint-
based biometrics independent of the application of special hardware. Scanners may
easily be replaced using faster and more accurate devices in order to benefit from
technological improvements.

• Cost: when biometric systems are applied, special hardware creates a number of
costs which are minimised when using hardware designed for large markets.

There are a variety of available scanners with different interfaces, namely USB, SCSI,
FireWire, and sensors, e.g. Charge Coupled Devices (CCD), Contact Image Sensor (CIS)
and Complementary Metal Oxide Semiconductor (CMOS). CCDs consist of an array of
coupled capacitative sensors for red, green and blue light, and feature the highest depth
of field of all three sensor types, whereas CIS scanners do not require mirrors or lenses
and therefore minimise geometrical distortions [5]. Even though almost every available
scanner provides colour capture, input images are processed as grey-scale bitmaps only.
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Figure 3.2: Resolution-duration tradeoff for HP Scanjet 3500c and G3010 flatbed scanners.

In order to be able to compare hand and footprint measurements, a single sensor has been
selected for both modalities.

HP Scanjet 3500c uses CCD technology, supports the USB interface and represents a 2002-
model placed in the low-cost workgroup market segment (according to a classification by
InfoTrends [5]). It comes with TWAIN driver support and supports an area of 216× 297
millimeters. An important parameter for image capture is resolution since this immedi-
ately affects scanning speed, image size and quality. The tradeoff between resolution and
duration of a single scan without preview has been analysed for both the employed HP
Scanjet 3500c and a new HP Scanjet G3010 model, kindly provided by Hewlett Packard
for this project. Figure 3.2 depicts the results of this study indicating points of discon-
tinuity at 300 and 600 dpi for the 3500c model. Scans between these natively supported
resolutions are most likely to be down-scaled from the next-highest natively supported
resolution. The G3010 driver supported scans at 150, 300, 600 and 1200 dpi only. When
comparing colour- and greyscale-mode, it can be seen that colour information further de-
grades scan speed by roughly 20−40% (G3010) and 70−100% respectively (3500c) within
the operational range. For hand-based capture grey-scale acquisition with a resolution of
500 dpi (and 600 dpi for footprints, respectively) has been selected, implying scanning
transaction times of roughly 95 seconds for the 3500c model and 40 seconds for G3010.
Practical tests have shown that longer capturing times are not only inconvenient, but also
may cause unintended displacement of the measured body part.
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(a) Employed scanning device.
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(b) Zhang’s palmprint acquisition device.

Figure 3.3: Comparing (a) employed scanner-based sensor and (b) Zhang’s camera-based
palmprint capture device (see: Zhang [44]).

Finally, for minimising environmental light, the scanner is situated in a box with a round
hole at one end for hand insertion, see Figure 3.3(a). Footprint-based data acquisition may
also be supported using a box with a hole at the upper frontal edge, but has been executed
in a darkened environment without a box. It is clear to the author, that instant capture
devices, like Zhang’s palmprint acquisition sensor, for example, depicted in Figure 3.3(b)
have certain advantages over the proposed solution with respect to convenience, especially
in commercial proprietary solutions (e.g. when installed as an embedded authentication
system without needs for standardisation or inter-operability). Nevertheless, the proposed
approach will be shown to produce satisfying results at low cost.
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While preprocessing steps are usually treated superficially in biometric system design,
they are nevertheless one of the most important steps to achieve fault-tolerant and sensor-
independent systems. A strong relationship exists between preprocessing and the FTA
rate. When alignment (such as iris segmentation in iris recognition systems) can not be
achieved or image quality checks indicate bad quality, templates are usually rejected and
a reacquisition of the biometric sample is necessary [21]. Preprocessing can drastically
increase image quality and thus reduce FTA and furthermore FMR and FNMR values.
Examples of preprocessing steps increasing image quality are:

• Texture enhancement using, for example, multi-spectral image analysis [34], ori-
ented Gabor-filters (for dry or wet fingerprints) [21], image normalisation in mean
and variance [18] or more generic approaches targeting histogram equalisation;

• Image alignment by achieving normalisation in direction and position. Using mo-
ments, Nakajima et al. [26] could improve their Euclidian-distance-based footprint
recognition method on raw images by roughly 55%. Yoruk et al. [42] normalize
hands using re-alignment of individual fingers with texture blending. The second
approach has not been implemented in this work, since most of the hand-based
features operate on local single fingers instead of the entire hand image and for
footprints close-fitting toes constitute problems.

• Image segmentation and masking areas of low quality, which may be suppressed
for feature extraction (e.g. quality maps in [51]). Segmentation of the original image
may also be helpful, when large amounts of data are processed, such as is the case in
hand- and footprint-based recognition. An area of DIN A4 at 500 dpi corresponds to
4252×5846 pixels and takes (uncompressed as 8-bit grey-scale image) approximately
25 MB of memory, whereas the average bounding box (the smallest circumscribed
axis-aligned rectangle) of 439 normalised hands of 86 people captured for experiments
in this work (see Chapter 7) only covers 47 percent of this area. Early localisation
of the hand may decrease memory requirements and increase computation speed
significantly, especially when filters with high complexity are applied to the entire
image.

Sometimes, a clear distinction between preprocessing steps and feature extraction is not
feasible, when no clear interface between both processing steps can be defined. In this
work, preprocessing unifies common alignment steps executed by most of the applied
feature extractors in order to avoid additional overheads. Due to anatomical differences
of hands and feet, preprocessing steps differ for rotational alignment and salient point
detection.
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4.1 Overview

The following information is provided by the preprocessing module in both hand- and
footprint-based systems:

• Normalised hand/foot image: this image contains the measured body part with
the following normalisation: (a) segmented from background, (b) aligned in direction
and position and (c) with removed arm and leg parts.

• Contour information: in order to identify fingers/toes within input images, pre-
processing comes along with hand/foot contour information including landmark in-
dices, such as salient points (i.e. intra-finger/intra-toe valleys and finger/toe tips).

This definition implies that each feature extractor is effectively provided with the same
information of the whole hand and may discard unused information within a feature-
extractor-dependent processing step, before actual extraction takes place. In the strict
multibiometric sense of this definition, the employed scenario corresponds to multiple
matcher [14], whereas a slight modification of the preprocessor providing each modality
(fingerprint, palmprint, hand geometry) with already cropped input would classify the
scenario as multiple biometrics or multiple units (in case of fingerprints when each fingertip
is processed independently by the same matcher).

Hand- and footprint-based preprocessing consists of three consecutive steps:

1. Segmentation: as introduced before, hand and foot only cover parts of the sensor
image. Thus, a coarse segmentation, by means of detecting the bounding box of
the actual handprint/footprint, is applied to increase computation speed of more
complex feature extraction. Segmentation typically also includes binarisation for
masking the background parts in the resulting image using either Otsu’s Thresh-
olding [29] (for hand images) or Canny edge detection [2] and thresholding (for
footprints).

2. Rotational alignment: when using peg-free systems like [43, 18], rotational align-
ment has yet to be achieved. A frequently applied method is rigid hand registration
using statistical moments estimating the best-fitting ellipse, a technique from face-
detection [36]. While [43] also proposes finger-alignment for binary images, this
normalisation is not implemented in the proposed system due to textural distortions
caused by different spreadings of fingers. In contrast to more cooperative capture
(like in [18]), problems were experienced using ellipse fitting for hands with spread
fingers, thus a more elaborate approach was introduced using the palm borderline,
the least-squares approximated line between wrist and little finger.

3. Contour extraction and salient point detection: For hand-images, intra-finger
valleys (and peaks) can be detected as minima (and maxima) of the radial distance
function using a reference point at the wrist [43]. In my experiments, this method
is found to be fragile with respect to bad background segmentation, rings (causing
contour artifacts) and high resolutions. In this work a new method is proposed,
improving intra-finger valley candidates (provided by the radial distance function)
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with line-approximation of individual finger boundaries and intersection of the intra-
finger angle bisector with the contour. Finger peaks can then be determined by
matching each individual finger with the best fitting ellipse and intersecting the
major axis with the finger contour. For footprints, intra-toe valley detection is
achieved, improving salient point candidates within sectors centered at the center of
mass of the footprint.

4.1.1 Hand preprocessing

The following section technically describes processing steps in order to achieve rotational
and translational invariance of hand images. Further details on the employed techniques
are presented in separate sections. Employed preprocessing steps for hand images are
illustrated in Listing 4.1 using Java-like pseudo-code.

Listing 4.1: Pseudo-code representation of the Hand-Preprocessing algorithm.� �
1 void PreprocessHand (Bitmap hand)

{
3 final int max_iterations = 3;

Bitmap tmp , bin;
5 ContourInfo cinfo;

Point center;
7 float rotation ;

9 tmp = CropInputImage (hand );
bin = HandMask (tmp );

11 hand = Multiply (tmp ,bin ); // cropped and segmented hand
tmp = bin; // start to find arm parts in binary image

13 for (int i = 1; i < max_iterations ; i++){
center = CalculateCenterOfMass (tmp );

15 rotation = CalculateRotation (tmp ,center );
tmp = Rotate(center ,rotation ,tmp );

17 tmp = IterativeArmRemoval (center ,rotation ,tmp ,bin );
} // within tmp all arm parts are removed

19 cinfo = CalculateHandSilhouette (tmp );
center = GetMiddleRingFingerValley (cinfo );

21 rotation = GetPalmBoundaryLineRotation (cinfo ,center );
tmp = Rotate(center ,rotation ,tmp ); // tmp is normalized

23 tmp = IterativeArmRemoval (center ,rotation ,tmp ,bin );
cinfo = CalculateHandSilhouette (tmp );

25 AlignHandImage (hand ,cinfo ,center , rotation );
AlignHandContour (cinfo ); // hand and contour are aligned

27 Save(hand );
Save(cinfo ); // normalised image and contour are stored

29 }
� �
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Custom functions defined in Listing 4.1 refer to the following execution of tasks:

• CropInputImage(hand): this involves (a) image downscale by factor 10, (b) gaussian
blur using the parameters σ = 2, s = 3, (c) binarisation using Otsu’s Threshold, (d)
region size filtering, (e) bounding box determination and (f) cropping of the initial
hand image according to the upscaled bounding box.

• HandMask(tmp): in order to mask background pixels, a downscaled (factor 3) and
blurred version (σ = 2, s = 7) of tmp is (a) binarised, (b) morphologically dilated
and (c) size filtered.

• Multiply(tmp,bin): This filter aligns both images in size and performs pixel-wise
multiplication of both operands.

• CalculateCenterOfMass(tmp): this method refers to inertial moment calculation,
in particular to the calculation of the hand’s center of mass.

• CalculateRotation(tmp,center): this function estimates the inclination of the
major axis of the best-fitting ellipse.

• Rotate(center,rotation,tmp): rotates the image tmp using the angle rotation
and origin center.

• IterativeArmRemoval(center,rotation,tmp,bin): the rotated tmp image is used
to estimate the wrist line with a top-down scanning algorithm based on thresholding
of vertical slices (choosing the slice where the number of hand pixels falls below 50%
of the slice with the maximum number of hand pixels). This line is transformed to
a half-space mask (masking the arm in the bin image), which is multiplied with bin
and thus clips visible arm parts.

• CalculateHandSilhouette(tmp): the hand-object in tmp is a path-connected space
(in terms of 8-neighbourhood of pixels). Therefore, the contour silhouette can easily
be extracted by a counter-clockwise scan algorithm with a starting point at the
center of the wrist.

• GetMiddleRingFingerValley(cinfo): salient points are estimated from the con-
tour using local maxima and minima of the distance-function with respect to the
wrist reference point. These initial candidates are refined cutting the intra-finger
angle bisector with the contour and performing ellipse fitting on individual fingers.

• GetPalmBoundaryLineRotation(cinfo,center): this method extracts the rotation
of the line approximating the palm boundary sequence for hand alignment.

• AlignHandImage(hand,cinfo,center,rotation): since all of the employed pro-
cessing steps have been performed on a sub-sampled binary image, the hand image
is updated (with respect to arm removal, rotational- and displacement-alignment).

• AlignHandContour(cinfo): finally, the calculated hand contour is aligned and re-
stricted to its bounding box.

• Save(hand), Save(cinfo): stores normalised image hand or contour cinfo to disk.
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4.1.2 Foot preprocessing

Despite the fact that hand and foot have many anatomical properties in common, their
preprocessing requirements are quite different. This is caused by:

• elliptical foot shape: due to its natural elliptical form and the absence of parts of
the leg in the scan (which may have to be removed, like arms in case of hands), best-
fitting ellipse-matching for rotational invariance performs well. Also, the problem
of ulnar or radial abducted phalanges causing large variations when matching the
footprint using moments is not present in this application domain. Thus, there is
no need to further define processing steps with respect to rotational normalisation.

• close-fitting or dorsal extended toes: due to common abnormalities (see [8]:
e.g. hammer toes, claw toes, hallux valgus), unintended dorsal extension of toes or
close-fitting toes, it is difficult to extract inter-toe-valleys from the foot silhouette.
Instead, candidate points on the silhouette curve are refined within the cone centered
in the foot’s center of mass with a central angle defined by the horizontal distance
of the candidate points. Within this sector, the southern-most end-point of the
inter-toe edge is selected as the true inter-toe valley.

The employed processing tasks for foot-based preprocessing are presented in pseudo-code
notation in Listing 4.2.

Listing 4.2: Pseudo-code representation of the Foot-Preprocessing algorithm.� �
1 void PreprocessFoot (Bitmap foot)

{
3 Bitmap tmp , bin;

ContourInfo cinfo;
5 Point center;

float rotation ;
7

tmp = CropInputImage (foot );
9 bin = FootMask (tmp );

foot = Multiply (tmp ,bin ); // cropped and segmented foot
11 tmp = bin;

center = CalculateCenterOfMass (tmp );
13 rotation = CalculateRotation (tmp ,center );

tmp = Rotate(center ,rotation ,tmp ); // tmp is normalized
15 cinfo = CalculateFootSilhouette (tmp );

AlignFootImage (foot ,cinfo ,center , rotation );
17 AlignFootContour (cinfo ); // foot and contour are aligned

Save(foot );
19 Save(cinfo ); // normalised image and contour are stored

}
� �
At this point I will discuss all employed custom functions in detail:
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• CropInputImage(foot): this function can be implemented in the same way as the
corresponding function for hand images in fully-automated environments. An addi-
tional border of tolerance of at least 1 pixel is needed in order to be able to detect
contour edges located at the border with the following processing steps. But the
function has not been implemented due to a semi-automated acquisition procedure
using the preview-function of the TWAIN driver and manual selection of the foot-
print area, in order to save acquisition time (smaller scanning area).

• FootMask(tmp): in order to preserve edges for accurate shape feature extraction,
(a) Canny edge detection is employed, (b) the interior of the foot is filled using
binary thresholding, (c) the resulting image is subjected to morphological dilation,
(d) region size filtering and (e) morphological erosion.

• Multiply(tmp,bin): unchanged, see Section 4.1.1 for hand preprocessing.

• CalculateCenterOfMass(tmp): unchanged, see Section 4.1.1 for hand preprocess-
ing.

• CalculateRotation(tmp,center): unchanged, see Section 4.1.1 for hand prepro-
cessing.

• Rotate(center,rotation,tmp): unchanged, see Section 4.1.1 for hand preprocess-
ing.

• CalculateFootSilhouette(tmp): foot silhouette extraction is performed in an al-
most identical way to hand images, except that the starting point is located on the
outside part of the foot at 50% of the foot’s height.

• AlignFootImage(foot,cinfo,center,rotation): since all of the employed pro-
cessing steps have been performed on a sub-sampled binary image, the foot image
is updated (with respect to rotational- and displacement-alignment).

• AlignFootContour(cinfo): the calculated foot contour is aligned and restricted to
its bounding box.

• Save(foot), Save(cinfo): stores normalised image foot or contour cinfo to disk.

4.2 Binarisation

Binarisation is a thresholding problem and targets the segmentation of the input image,
which precedes image analysis supporting the extraction of higher-level image information,
such as object contours or features. More formally, m × n images may be treated as 2D
grey-scale intensity functions of two variables assigning to each pixel P at position (x, y)
its grey level B(x, y) within {0, . . . , l} (l = 255 for 8-bit grey-scale images).
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(a) Detail in original scan.

(b) Detail after gaussian blur. (c) After Otsu’s Thresholding.

Figure 4.1: Result of binary thresholding using Otsu’s method on the gaussian blurred
input hand.

Definition 4.2.1 (Image). An m× n image is a function:

B(x, y) : {1, . . . ,m} × {1, . . . , n} → {0, . . . , l}.

Without loss of generality, an object coordinate system located in the upper left corner is
assumed.

The task of binarisation can simply be regarded as a reduction of the intensity levels to
the set {0, 1}, i.e. l = 1 for a determination of background and foreground (hand- or foot-)
pixels.

While many techniques based on the statistics of grey-level histograms (i.e. graphical
illustrations of tabulated frequencies of intensity values) exist [20], Otsu’s method has
been around since 1979 and produces satisfying results as illustrated in Figure 4.1. It has
proven to be a good alternative for hand geometry [18].
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4.2.1 Fast Otsu Thresholding

Let pi refer to the probability of grey level i within the image B and let µ be the mean
intensity of the image. Otsu’s Method [29] is a global thresholding algorithm, i.e. a global
threshold t ∈ {0, . . . l + 1} is selected, such that the new binary image B′ is given by:

B′(x, y) =
{

1 if B(x, y) ≥ t,
0 otherwise. . (4.1)

Since light reflected by the sole of the foot or palm is converted into pixels with higher
intensities, this leads to a good separation of background (represented by the class C1
with grey levels {0, . . . , t−1}) and sole/palm (represented by the class C2 with grey levels
{t, . . . , l}). For a given threshold t and class k ∈ {1, 2}, let ωk refer to the class probability
and µk refer to the mean for Ck [20]:

ωk :=
∑
i∈Ck

pi; (4.2)

µk := 1
ωk

∑
i∈Ck

i pi. (4.3)

Otsu’s method chooses t∗, such that the between-class variance σ2
B is maximised [20]:

σ2
B(t) :=

2∑
k=1

ωk(µk − µ)2 =
2∑

k=1
ωkµk

2 − µ2; (4.4)

t∗ = arg max
1≤t≤l

{σ2
B(t)}. (4.5)

Since obtaining ωk and µk for each threshold t involve many recurring operations, an
improved fast threshold search can be implemented using lookup-tables of recursively
calculated zeroth- and first-order moments of pixel intensities u to v, as illustrated in
[20].

4.2.2 Canny-edge-detection based binarisation

In order to preserve foot edges for accurate shape feature extraction within the footprint
system, first Canny edge detection [2] with binary thresholding on the original image B
is employed. This step keeps the most significant edges only which reliably represent foot
contours. Then, within the obtained edge image B1, the interior of the foot is filled using
binary thresholding on B, i.e.

B2(x, y) := max(B′(x, y), B1(x, y)); (4.6)
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where B′ is obtained by global thresholding. Then, the binary image B2 is subjected to
morphological dilation using a square structuring element S in order to close the boundary:

B3 := B2 ⊕ S = {(x, y)|Sxy ∩B2 6= ∅}; (4.7)

where Sxy denotes a shift of S by (x, y). Still, the image may contain more than one
connected component. Since both hands and feet can be supposed to consist of only one
connected space (in terms of 8-neighbourhood), all other (smaller) connected components
are removed from B3 using a filtering technique. Finally, morphological erosion is employed
on the obtained image B4:

B5 := B4 ⊗ S = {(x, y)|Sxy ⊆ B4}. (4.8)

4.3 Rotational Alignment

Even if the arm is inserted straight into the scanning device, ulnar and radial abduction
cause slight rotations. These rotations have to be corrected by a preprocessing algorithm.
One method to perform rotational alignment is matching hand- and footprints with the
best-fitting ellipse, proposed in [36].

As can be seen in Figure 4.2, results for footprints are satisfying, due to their elliptical
form. Hand-prints are more difficult to match reliably, especially because of different
spreadings of fingers.

4.3.1 Moment-based alignment

Moment-based alignment has been used in face recognition [6] and hand recognition sys-
tems [18] and has also proven to be successful for alignment of footprints [26]. First, the
center of the ellipse is calculated (see [6]):

Definition 4.3.1 (Center of mass). Given the binary m × n image B and the number a
of white pixels representing the object in the image, then the center of mass, C = (x, y),
is estimated as follows:

x = 1
a

m∑
i=1

n∑
j=1

iB(i, j), y = 1
a

m∑
i=1

n∑
j=1

jB(i, j).

The goal is to calculate the angle Θ between y-axis and the major axis of the best matching
ellipse (see [6]):
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(a) Examples of rotationally aligned hands using moments.

(b) Examples of rotationally aligned feet using moments.

Figure 4.2: Results of moment-based rotational alignment on hand and foot images.
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4.3 Rotational Alignment

Θ = 1
2 arctan( 2µ1,1

µ2,0 − µ0,2
); (4.9)

µ2,0 =
m∑
i=1

n∑
j=1

(xij − x)2B(i, j); (4.10)

µ1,1 =
m∑
i=1

n∑
j=1

(xij − x)(yij − y)B(i, j); (4.11)

µ0,2 =
m∑
i=1

n∑
j=1

(yij − y)2B(i, j). (4.12)

4.3.2 Palmprint-boundary based alignment

Another technique used for aligning inked palmprints is a definition of a palmprint coordi-
nate system and rotating and translating the palmprint to a located origin and determined
y-axis [44]. This method is adapted to binary hand images in this work and involves the
following steps:

1. Determination of the origin: while inked palmprints exhibit texture information
permitting the definition of the origin as the outer end-point of the heart line [44],
binary hand images allow the definition of a similar invariant point using geometrical
measures, i.e. the intra-finger valley V2 ∈ R2 between index and middle finger.

2. Determination of the y-axis: in analogous manner to [44], the y-axis is defined as
the outer palm’s boundary (which can be approximated by a straight line) translated
to the origin. Start and end points, however have to be defined carefully in order
to get the same portion of the outer boundary for different hand-prints. The palm
boundary sequence is approximated by a line using the method of least squares in
order to obtain a normalised orientation.

Definition 4.3.2 (Palm boundary sequence). Let T5 ∈ R2 denote the finger-tip of the little
finger and V4 ∈ R2 the corresponding intra-finger valley. Furthermore, let 〈S0, . . . ,Sn〉 de-
note the (counter-clockwise) hand silhouette sequence. Then, the palm boundary sequence
is the subsequence 〈Sk, . . .Sl〉 with:

k = max{x ∈ {0, . . . , n} : ‖ Sx −T5 ‖≤‖ V4 −T5 ‖};

l = max{x ∈ {0, . . . , n} : ‖ Sx − Sk ‖≤ t};

where t denotes the average length of fingers for this hand.
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4.4 Silhouette extraction

Having a binary m × n input image B with only one connected component as the hand
or foot object, the counter-clockwise contour polygon 〈S0, . . . ,Sn〉 is traced as follows:

1. Estimation of starting point S0: depending on whether hands or feet are pro-
cessed, the starting point is found when intersecting the wrist or outside boundary
line of the foot with lines parallel to y-axis (and x-axis, respectively) through the
center of the (cropped) image. For hands, one can define:

S0 =
(

m
2

max{y ∈ {1, . . . , n} : B(m2 , y) = 1 ∧B(m2 , y + 1) = 0}

)
; (4.13)

For feet, the starting point is selected as:

S0 =
(

min{x ∈ {1, . . . ,m} : B(x− 1, n2 ) = 0 ∧B(x, n2 ) = 1}
n
2

)
. (4.14)

2. Contour tracing: having selected S0, contour tracing involves a local decision of
the next contour pixel Sk+1 based on Sk and the current direction index dk within the
sequence 〈dm〉 referring to left-up, left, left-down, down, right-down, right, right-up,
up directions in counter-clockwise order:

〈dm〉 = 〈
(
−1
−1

)
,

(
−1
0

)
,

(
−1
1

)
,

(
0
1

)
,

(
1
1

)
,

(
1
0

)
,

(
1
−1

)
,

(
0
−1

)
〉.

(4.15)

Now, Sk+1 is selected with respect to the next counter-clockwise non-zero pixel within
an eight-neighbourhood starting at the pixel in direction of dk, i.e. the predecessor of
Sk. Finally, the resulting found direction is reversed, such that dk+1 points towards
the new predecessor Sk of Sk+1.

dk+1 = (dk + 4 + min{i ≥ 1 : B(Sk + d(dk+i) mod 8) = 1}) mod 8; (4.16)

Sk+1 = Sk − ddk+1 . (4.17)

The iteration stops, when Sn = S0 is reached. Initial directions are d0 = 3 = down
for hands and d0 = 1 = left for feet.
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Figure 4.3: Sample radial distance and significance function with vertical lines indicating
candidates for finger peaks and valleys.

4.5 Salient point detection

In order to normalise hand images which exhibit more variation than feet after initial ro-
tational alignment using moments, indices of salient points, i.e. finger peaks and valleys,
have to be extracted from the obtained silhouette polygon [28, 42, 43]. For footprints, de-
tection of toe peaks and valleys is primarily used for geometry feature extraction (including
length of toes), thus this processing step may also be migrated to geometry feature extrac-
tion in this case (since it is not used for normalisation purposes). Since salient points of
footprints are more difficult to extract (due to tightly fitting toes), I will first cover salient
point extraction for hand images and then discuss adaption for footprints.

Typically, salient points are extracted from the hand contour 〈S0, . . . ,Sn〉 by finding local
minima and maxima of the corresponding radial distance function [43]:

R(i) :=‖ Si −P ‖ ∀i ∈ {0, . . . , n}; (4.18)

with respect to a reference point P at the wrist region. The implemented algorithm uses
P = S0 for hands. In the case of footprints, the center of mass is a good reference point
to obtain contour peaks and valleys: P = C. Instead of the radial distance function, in
this work a significance function I estimating local bending is defined (see Figure 4.3):

I(i) :=
n
15∑
j=1

R(i− j mod n)−R(i)
j

− R(i)−R(i+ j mod n)
j

. (4.19)

Due to their anatomical form, finger valleys have high positive significance, while peaks
can be expected to exhibit negative significance. Local minima and maxima within the
interval I0 := [1, n] are extracted iteratively by selecting the global maximum of I within
Ik, max(I, Ik), and escaping the window with positive values around the maximum, i.e.:
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(b) Foot salient point refinement.

Figure 4.4: Position of (a) initial peak and valley candidates, finger axes, finger boundaries
and inter-finger bisecting lines within a normalised (binary) hand and (b) initial
peak and valley candidates and triangular valley-refinement areas within a
normalised (binary) foot.

Ik+1 = Ik\{x ∈ {1, . . . , n} : I(y) > 0 ∀y ∈ [min{x,max(I, Ik)},max{x,max(I, Ik)}]∩N}.
(4.20)

Having extracted the five finger peak candidates Tc
k ∈ R2 (ordered according to their

relative position within 〈S0, . . . ,Sn〉) from max(I, Ik), k = 0, . . . 4, valleys Vc
k refer to

absolute minima between two consecutive peaks.

4.5.1 Salient point refinement for hands

The method introduced before is found to produce reliable candidate points, but due to
high resolution and segmentation errors caused by rings and scanner quality, often valleys
are displaced. Figure 4.4(a) illustrates refinement methods and originally extracted valley
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4.5 Salient point detection

and peak candidates of the corresponding significance function in Figure 4.3. Candidate
points for hands are refined as follows:

1. Finger peak refinement using best-fitting-ellipse matching for each finger:
since fingers have elliptical shape, finger peaks Tk ∈ R2 can be detected more reliably
by estimating the major axis mk of the best-fitting ellipse for each individual finger,
using the rotation techniques described earlier in this chapter:

Tk := Sj, j = arg min
1≤i≤n

{d(i)}, d(i) =
{
∞ if dist(Si,mk) > thres,
‖ Si −Tc

k ‖ otherwise. (4.21)

2. Finger valley refinement using least-squares approximation of the finger
boundary: for a given, normalised finger (centered within the center of mass and
using the major and minor axes of the best-fitting ellipse as coordinate axes), the left
(and right) finger boundary line can be defined as the least-squares approximated
line of contour members within the third (and fourth, respectively) quadrant, for
which the x-coordinate lies within a 90% interval around the mean value for this
quadrant (to eliminate outliers). Then, for two finger boundary lines bordering an
inter-finger valley, the bisecting line bk is selected, which divides the smaller angle
(or if the enclosed angle α lies in between [60◦, 90◦], the line separating both adjacent
finger tips into two half-spaces). In case of both lines being parallel, the line with
equal distance to both boundary lines is selected.

Vk := Sj, j = arg min
1≤i≤n

{d(i)}, d(i) =
{
∞ if dist(Si, bk) > thres,
‖ Si −Vc

k ‖ otherwise. (4.22)

4.5.2 Salient point refinement for feet

For footprints, modifications are necessary in order to obtain true inter-toe valleys. Can-
didate points are selected in a similar manner, i.e. points of high curvature with respect
to a significance function are extracted. However, as illustrated in Figure 4.4(b), inter-toe
valleys on the silhouette are less distinctive. Since toes may occlude each other, intra-toe
valleys are frequently not even members of the contour polygon, as is the case in Figure
4.4(b). The following processing steps are executed for footprints:

1. Estimation of initial valley candidates: using a significance function based on
the average angle of a contour point (for simplicity-reasons, the x-monotone sub-
contour is selected for candidate extraction) with its neighbourhood, valley candi-
dates Vc

k ∈ R2 are extracted and ordered according to their relative position within
〈S0, . . . ,Sn〉.

2. Estimation of toe peaks: since peaks of toes are typically not occluded and are
usually members of the contour, they can be identified as local maxima of the contour
between two consecutive valley candidates.
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4 Preprocessing

3. Valley refinement within cones: true valleys may be off-line, i.e. not members
of the contour. Therefore, a triangular search area 4k is defined for each valley
candidate Vc

k, which is scanned bottom-up (points with larger y-coordinates first)
to find the true inter-toe valley. Each region 4k is formed as the union of two right
angle triangles sharing the same cathetus Vc

kC with right angle at Vc
k and with inner

angles αk, βk at C as follows:

αk :=
{

∠(Vck+1;C;Vck)
3 if 0 ≤ k < 3;

2βk otherwise.
(4.23)

βk :=
{

∠(Vck;C;Vck−1)
3 if 1 ≤ k < 4;

2αk otherwise.
(4.24)

The function ∠ : R2 × R2 × R2 → R estimates the enclosed angle between three
(counter-clockwise) points. The inter-toe valley is defined as the point with largest
y-coordinate (and smallest x-coordinate, if not unique), that has a non-zero intensity
in the binarised foot image (i.e. this method is sensitive to holes within the binarised
image referring to inter-toe space).
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5 Feature extraction

The designed hand and foot-biometric system is multimodal in the sense of [32] combining
the result of different matching algorithms in order to improve recognition accuracy. More
precisely, according to [33], both proposed systems may be classified as multi-algorithm
systems applying fusion after matching. Therefore, r different feature extractors Ei and
matchers Si for i ∈ {1, . . . , r} are applied independently of all other extractors and match-
ers representing different modalities (fingerprint, palmprint, hand geometry for hands and
ballprint, soleprint, foot geometry for feet) and algorithms within these modalities (e.g.
Eigenpalms + Eigenfingers or ridge-based Palmprint features). Sometimes, single features
are applied to individual fingers instead of the entire hand. Then, even a single feature
extractor Ei or matcher Mi may use biometric fusion. In this case, given a biometric
sample X, feature vectors xui of single units u (e.g. fingers or the palm region) are concate-
nated (or augmented, see [33]) to a vector xi representing the union of features for each
(virtual) extractor Ei. Unit-based matchers for each algorithm operate on the projected
single feature vectors xui for each unit, that is, prior to execution of a unit-based matcher,
its corresponding projection: P u

i : xi� xui is applied and a single matching score for each
(virtual) matcher Mi is generated. Thus, single feature extractors and matchers may itself
(as a single algorithm) be multimodal. In this sense, the employed scenario corresponds
to hybrid biometric systems [33].

Typically, each feature extraction algorithm requires a special resolution (e.g. minutiae
extraction requires up to 500 dpi, while hand geometry works on images as low as 45 dpi)
provided by the preprocessing module directly or by further involving feature extractor
dependent preprocessing stages.

According to [42], common hand biometric systems, and therefore foot biometric systems,
in an analogous manner can broadly be classified as follows:

• Geometric features: schemes relying on silhouette shape and the lengths and
widths of fingers, among others;

• Texture features: extracting palm curves or minutiae-based texture information
(such as the NFIS2 minutiae matching software from NIST [51]);

• Hybrid approaches: these systems employ fusion at decision, matching-score or
feature extraction level to improve error rates. Examples comprise [18, 19, 34, 28],
however, fingerprint matching results are fused with hand geometry in multiple bio-
metric schemes (such as in [32]), rather than combined employing a single sensor (as
in [19], for example). A reason for this might be that, usually, fingerprint matching
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requires special hardware for image acquisition and does not work on low-resolution
input.

In this work, hybrid approaches are observed extending the considerations to fingerprint
biometrics since minutiae and singular points, which are typical features of fingerprint
recognition, may also be extracted from palmprints [44]. Typical ridge structures are also
present on large parts of the foot. When multiple features can successfully be extracted
from the captured scans of hands or feet, system performance can be increased using
fusion without the cost of additional sensors or further inconvenience caused by multiple-
step data acquisition.

While some features may be extracted from both hand and foot images, others require
different regions or even modifications regarding composition of the feature vector. One
example is minutiae-based feature extraction: while fingers exhibit a large touching surface
with the scanning device, problems have occurred when trying to extract minutiae out of
toes. In such cases, the employed extractors have been applied to different areas within
hands and feet (i.e. hand-based minutiae extraction concentrates on finger tips, while
for footprints the ballprint area is examined). This, however, introduces a change, which
makes a direct comparison of the same algorithm between the different classes of hand- and
footprint-based biometric systems difficult (especially, when results of multiple instances
are combined, as is the case for fingerprint matching within hands).

5.1 Overview

This chapter describes in detail the generation of individual feature vectors xi for each
extractor Ei. Since both hand and footprint-based algorithms use the same features (with
certain modifications), all features will be introduced in sequential order with all neces-
sary adaption to foot-biometrics. Furthermore, problems regarding anatomical differences
between hand and foot will be pointed out and solutions will be discussed. A list of
implemented features for both systems can be found in Table 5.1.

5.1.1 Geometric features

The first part of the features comprises geometrical features corresponding to techniques
used in hand geometry systems. Geometric measurements are frequently employed in
hand biometric systems due to their simplicity, robustness to injuries, high collectability
and acceptability. They usually rely on low-resolved binary images [18, 43] and, as the
major advantage over fingerprint or palmprint features, they demand low processing power.
Image capture is less complex than for biometrics captured at a distance (simple scanners
suffice for acquisition [43]) and they can be acquired in a short time. However, this
comes at the cost of relatively weak accuracy, as illustrated in Table 2.2. Typical hand
geometry-based systems [18, 43, 13, 35] exhibit EERs in verification mode of 3 − 10%
among databases of about 400− 1000 samples. While not at all suitable (if not integrated
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5.1 Overview

Algorithm Hand Foot

Silhouette
5 finger contour dist. to finger cen-
troid, length and enclosed area of
single finger’s silhouette polygon

contour dist. to foot centroid,
length and enclosed area of silhou-
ette polygon

Shape 5 × 3 local finger widths and posi-
tions

15 local foot widths and positions

Fingerlength/
Toelength

5×3 length of proximal, intermedi-
ate and distal phalanges, 5× 2 (left
and right) average finger widths

5 toe lengths and 4 inter-toe angles

Palmprint/
Soleprint

variance of 144 overlapping blocks
in edge-detected image (similar to
[18])

variance of 288 overlapping blocks
in edge-detected image (similar to
[18])

Eigenpalms and
Eigenfingers/
Eigenfeet

projection of sub-sampled fingers
and palm onto feature space
spanned by 25 most significant
principal components

projection of sub-sampled footprint
onto feature space spanned by 20
most significant principal compo-
nents

Minutiae
using NIST [51] mindtct minutiae
extractor on 5 finger tips

using NIST [51] mindtct minutiae
extractor on ballprint region under
big toe

Table 5.1: Employed geometric and texture-based features using hands and footprints as
input.

with other biometrics) for identification problems (since for large scale identification out of
m subjects, the approximation FAR(m) ' m · FAR holds [1]), nevertheless these features
serve excellently for classification purposes in cascaded hierarchial multibiometric systems
[33]: these systems process biometrics in a tree-like architecture to determine the identity
of an individual by reducing the number of matches employing a coarse (fast) matcher
to derive the top n matches, which are further investigated by more accurate (but more
costly) matchers. Considering the sole of the foot can be prone to injuries, shape-based
features seem well suited for the foot verification task. A large number of possible features
fall into the category of geometrical features, which can broadly be divided into:

• Global features: focusing on measures with respect to the whole hand, e.g. palm
width, length or hand area and;

• Local features: representing local lengths and intersections, such as finger lengths
and widths at various positions or finger contours.

In this work, three different geometrical algorithms have been implemented, namely Sil-
houette, Shape and Fingerlength/Toelength, for both hands and footprints. Silhouette
takes into account the contour shape of single fingers and feet using a variable-size feature
vector. While for hands, the number of typical measurements lies in between 20− 30 [42],
the two implemented algorithms Shape and Fingerlength/Toelength extract 9 − 25 static
measurements of the foot and finger shape, depending on whether hands or feet are pro-
cessed. While for the application on hands, similar performance to existing systems can
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be expected, due to close-fitting toes, a rather high intra-personal variability in general is
assumed for feet. This may also be caused by the fact that many hand recognition schemes
rely on a robust identification of finger tips and finger valleys. When these characteristic
landmarks can not be detected reliably, a normalisation, i.e. correct placement of individ-
ual fingers, is hard to achieve. The extraction of these salient points is often facilitated by
pegs [35, 13]. However, since toes can not be spread easily, peg-based systems are almost
unacceptable for footprint systems. Instead, toes are typically aligned to a person-specific
position, thus inter-toe angles can be extracted as features. More advanced schemes like
[43] employ normalization in the preprocessing stage, but demand high contrast between
background and palm.

5.1.2 Texture-based features

The second part of features corresponds to texture-based features. Both fingerprint and
palmprint biometrics extract features from textural patterns at different scales. For fin-
gerprint, these are [21]:

• Global level features: determining singular points;

• Local level features: extracting minutiae details; and

• Very-fine level features: estimating positions of sweat pores.

Palmprints also exhibit textural features at these levels, e.g. metacarpal minutiae ex-
traction [34] or singular-point determination [44]. Important palmprint-based features,
according to [44], also involve:

• 2D Gabor-filter-based features: a set of discrete Gabor filters with discretised
orientation, standard deviation and frequency is convoluted with the preprocessed
palmprint sub-image yielding a two-bit phase-information;

• Line features: first-order derivatives of the grey-level profile are extracted for dif-
ferent directions (e.g. 0, 45, 90 and 135◦ [18, 44]), from which features are extracted,
such as ChainCode consisting of directional information for each member of a line;

• Linear discrimination features: using algebraic transformations or matrix de-
composition, such as the Fisherpalm or Eigenpalm approach, these extractors con-
sider input images as high-dimensional noisy vectors which need to be projected
into a lower-dimensional feature space. A similar situation is assumed for fusion
techniques, where dimensionality reduction techniques such as principal component
analysis (PCA), independent component analysis (ICA) and multidimensional scal-
ing (MDS) are employed to further reduce augmented feature vectors from multiple
possibly correlated features [33].

• Transform-based features: By applying Fourier transform to palmprint images
and extracting the energy in concentric rings of the frequency image as R-features
and within sectors defined by lines through the origin as Θ-features, intensity and
direction of principal lines are estimated and encoded.
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Using feet instead of hands, new problems arise, such as the difficulty of distinguishing
between creases caused by different rotations of feet and permanent line patterns. Typ-
ical principal lines, such as life line, head line and heart line, can not be identified in
footprints. Instead a comb-like pattern is present which seems to be sensitive to different
pressure distributions. For this reason, simple and generic but robust methods [18] have
been favoured in the feature selection process to extract texture-based patterns. In this
work, three texture-based features are implemented: Minutiae extracts Level-2 fingerprint
features on tips of fingers and on the Ballprint area under the big toe using NIST’s fin-
gerprint software [51], Palmprint or Soleprint correspond to line feature-based techniques
estimating local principal lines using directional Prewitt edge detection in a generic manner
[18] and, finally, Eigenpalms + Eigenfingers and Eigenfeet is a linear discrimination-based
feature using principal component analysis [37]. While in the case of footprints, most
algorithms are applied to just one part of the foot, for hands some algorithms may be ap-
plied to each finger. In this case, extracted feature vectors are augmented and multimodal
fusion techniques are applied at matching stage to obtain a single matching score for each
of the algorithms in Table 5.1.

5.2 Silhouette feature

While many hand geometric features record high-level descriptive information about the
human hand, e.g. finger lengths or widths, the Silhouette feature targets low-level geomet-
ric, shape-based information with few assumptions about the measured object. Similar to
the shape-based approach in Jain et Duta [9], the objective is to extract a feature using
contour information and aligning both hand shapes. As mentioned in the previous chap-
ter, preprocessing already provides feature extraction with a (sub-sampled) contour and
various landmarks. However, in contrast to [9], this contour is not pre-aligned for fingers,
since it is peg-free. In addition, the alignment procedure is not obtained by finding a trans-
formation (linear or affine, for example) minimising a distance function between the point
sets of the contours to be matched, but contour-features are extracted prior to alignment
and optimally matched using dynamic time warping [25]. This approach is more effective
in terms of storage requirements (no contour needs to be stored, but the extracted fea-
tures) and matching performance. Another approach by Yoruk et al. [43] uses principal
component analysis to project contour points in 2D onto the eigenspace spanned by the
40, 100, 200 or 400 most significant eigenvectors of covariance matrix C obtained by a
set of sample hand contours. However, this method requires a proper alignment of single
fingers (which is achieved by a normalisation procedure interpreting input data [43]). To
be able to apply the same feature to both hands and feet, a simpler approach is favoured,
since alignment of toes in a preferred direction is more difficult and prone to normalisation
errors. The proposed method is generic in a sense that both hands and feet may be used
for feature extraction.

Dynamic time warping-based matching is a natural way to align features when having
a time series with possible missing parts in the contour polygon. Since the silhouette
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(a) Hand. (b) Foot.

Figure 5.1: Silhouette feature (contour distance to reference point, length and enclosed
area of the contour).

〈S0, . . . ,Sn〉 typically contains a large number of points (≈ 6000 for hand-prints and
≈ 3000 for footprints at the selected resolution respectively), a subsampling of contour
points is necessary to reduce target feature vector size. Sub-sampling may be performed
by just selecting each k−th contour point, thus reducing the number of contour points by
a given factor k, or a selection of the next contour point Ci+1 based on Ci by defining
a closed disk D around Ci with given radius r and selecting the point of 〈S0, . . . ,Sn〉
with largest index that lies within D, until the starting point intersects with D. In this
work the simpler first method with a factor k = 10 has been selected for hand-prints. For
footprints, k = 15 is chosen and an adaption of the first algorithm is applied, which may
select additional outlying contour points between Sik and S(i+1)k with respect to their
distance to the line through these points. This has been done to capture inter-toe valley
candidates more accurately. Due to missing finger alignment in case of hands, each finger
is extracted prior to sub-sampling and silhouette extraction is performed on each finger
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separately. At matching stage, a fusion of all matching scores is applied to obtain a single
matching score for a hand-print silhouette.

Given a (sub-sampled) contour 〈C0, . . . ,Cm〉, features are obtained with respect to a
reference point A. In the case of footprints, A corresponds to the center of mass. For
separate fingers in hand-prints, the center of mass with respect to the sub-contour of single
fingers (prior to sub-sampling) is selected. Note, that the center of mass with respect to a
given hand-print is not stable due to different spreadings of fingers. Let L(〈Ci〉), A(〈Ci〉)
denote length and enclosed area respectively of the selected contour, then the silhouette
feature vector x1 with respect to the sub-contour 〈Ci〉 is constructed as follows:

x1 :=


s0
. . .
sm

L(〈Ci〉)
A(〈Ci〉)

 ,with sk =‖ Ck −A ‖ ∀k ∈ {0, . . . ,m}. (5.1)

That is, the sequence of contour distances to the reference point is computed and area
and length of the contour are inserted. In the case of hand-prints, feature vectors of single
finger contours are augmented. Figure 5.1 illustrates the silhouette feature for both hands
and feet.

5.3 Shape feature

In addition to the silhouette feature introduced before, another shape-based feature is
examined by this algorithm. The definition of the following feature is motivated by the
fact, that feet are generally characterised by their local widths and bending. Again, an
application to both hands and feet is possible after translating feature extraction to single
fingers in case of hand-prints. This is necessary in order to avoid high intra-class variability
caused by different spreadings of fingers.

After aspect ratio preserving normalisation of the footprint or finger in order to achieve
predefined rotation and size, the object is divided into a set of vertical slices V0, . . .Va−1
with equal dimensions. In order to cope with different rotations of single fingers and
resulting contraction or elongation of outer finger boundaries, each finger is cropped at
the adjacent finger valley with closest distance to the top after normalisation. A left-
right scan method estimates the y-monotone contour polygon 〈S′0, . . . ,S′b〉 and the set
of enclosed pixels S. For each slice, the object’s average width wi is calculated, which
corresponds to the average width of the set Vi∩S for i ∈ {0, . . . , a−1} of in-object pixels.
Using a binary image B of size m×n and let ci denote the characteristic function of Vi∩S,
then:

wi = a

n

m∑
j=1

n∑
k=1

ci(j, k). (5.2)

51



5 Feature extraction

(a) Hand. (b) Foot.

Figure 5.2: Shape feature (average widths of vertical slices).

The final feature vector is now constructed as:

x2 :=

 w0
. . .
wa−1

 . (5.3)

For hand-prints, a = 3 is selected and single feature vectors are augmented once again,
yielding a total feature vector size of 15 components. Footprints are divided into a total
of a = 15 slices, see Figure 5.2. But in contrast to fingers, feature vectors of footprints
exhibit noise in the first two slices caused by toes. For this reason, the first two slices are
ignored in the matching process. Another difference to fingers is the problem of hypostatic
congestion mentioned in [26]: feet are generally about 5 millimeters larger in the evening
than in the morning. In addition, a significant change in weight may cause high inter-
personal variability. These problems are not yet covered in experiments and are subject
to further investigations.
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5.4 Fingerlength and Toelength feature

Hand extremities, i.e. finger tips and finger valleys, are exploited for various different
measures using a binary representation of the input image. Jain et al. [13] extract features
along 16 axes through fingers and palm. Sanchez-Reillo et. al. [35] use 25 features
including 4 − 5 finger widths per finger and deviation measurement using a side view of
the hand. Kumar et. al. [18] use 12 hand extremity features including 4 finger lengths, 8
finger widths (2 widths per finger). Yoruk et al. [43] employ principal component analysis
and/or independent component analysis on the hand shape and contour.

Mapping some of these features to toes and feet in foot biometrics is promising. But,
due to close-fitting toes in unstrained pose, special preprocessing is necessary, see Chapter
4, and features are subject to errors. Having extracted all valleys V1, . . . ,V4 and peaks
T1, . . . ,T5 for the input image, the outer finger valleys V0 and V5 are defined as the
contour point approximating the intersection between contour 〈S0, . . . ,Sn〉 and a circle
around the corresponding finger tip with radius equal to the distance to the adjacent
finger valley:

V0 = Si with i = min{x ∈ {0, . . . , n} :‖ Sx −T1 ‖≤‖ V1 −T1 ‖}; (5.4)

V5 = Si with i = max{x ∈ {0, . . . , n} :‖ Sx −T5 ‖≤‖ V4 −T5 ‖}. (5.5)

The feature vector for footprints is composed as follows:

x3 :=



l1
. . .
l5
α1
. . .
α4


with li =‖ Vi−1 + Vi

2 −Ti ‖, αj = ∠(Tj,Vj,Tj+1). (5.6)

That is, the 9 toe extremity values comprising the 5 toe lengths and the 4 inter-toe angles
as depicted in Figure 5.3 are extracted. Since inter-finger angles are not stable, a mapping
of this feature to hand biometrics is not expected to perform well. Instead, additional finger
parts, namely the length of proximal, intermediate and distal phalanx can be estimated
by the contour or textural finger image. In fact, the lengths of bones are not measured,
but rather the corresponding finger parts subdivided by creases in the finger texture are
estimated. This is achieved by searching the normalised finger within certain windows for
the vertical slice of height h = 30 with the lowest median of pixel intensities using the
local image histogram. After having extracted the length of all three parts as pj, ij, dj
for each finger j and the average left and right width of the extracted finger wj, w′j, the
feature vector for handprints is composed:

x3 := (p1, . . . , p5, i1, . . . , i5, d1, . . . , d5, w1, . . . , w5, w
′
1, . . . , w

′
5). (5.7)
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(a) Hand. (b) Foot.

Figure 5.3: Fingerlength and Toelength feature (lengths and widths of local finger parts
in case of hands, toe lengths and inter-toe angles in case of feet).

An interesting advantage having extracted the length of the big toe and its neighbouring
one is a pre-classification of feet. Like fingerprints are separated into basic pattern-level
classes known as arch, left loop, right loop, scar, tented arch, and whorl [51], it is also
possible to classify feet. According to the differences in length of hallux and second toe
one can identify the classes Egyptian feet (hallux longer than second toe), Greek feet
(second toe longer than hallux) and Square feet (both toes have almost the same length).
The relative frequency of each of these three classes is analysed in [8]: the analysed 498 left
feet can be segmented into 19.1% Greek, 73.3% Egyptian, and 7.6% Square feet. Similar
results are provided for right feet (497 right feet are divided into 18.7% Greek, 73.2%
Egyptian, and 8.0% Square). Orthopaedic surgeon Morton [24] was the first to describe
this phenomenon of the second toe (also called Morton’s toe) being longer than the big
toe as a part of Morton’s syndrome.
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5.5 Palmprint and Soleprint feature

While footprints may be classified with respect to the difference in lengths of first and
second toe, Zhang [44] proposes a classification of hands into six classes according to the
number of principal lines and their intersections. Classification results observed in [44]
are: no more than 1 principal line 0.36%, 2 principal lines and 0 intersections 1.23%, 2
principal lines and 1 intersection 2.83%, 3 principal lines and 0 intersections 11.81%, 3
principal lines and 1 intersection 78.12% and 3 principal lines and more than 1 intersection
5.65% among 13800 palmprints. Since footprints do not exhibit typical principal lines,
the implemented representative for line-based palmprint matching is a generic approach
proposed by Kumar et al. [18], which has proven well for fusion purposes with hand
geometry information. Generally, palmprint-based recognition tends to exhibit higher
accuracy than geometrical features. In the literature [44], EERs of less than 1% are
reported, but results largely depend on the employed algorithm and test circumstances.
Fusion-based systems [34, 18, 28] operating on similar whole-hand input data like the
proposed system in this work exhibit EERs in the order of 3 − 6% for their palmprint
features. Similar performance is expected for the employed feature in case of hand-prints.
For footprints however, due to less distinctive line structures, textile defilement, dorsal
injuries and skin creases caused by touching the scanning device, it is not clear if this
general statement is true. In cooperative environments, such as access control in thermal
baths, intra-class pressure distribution can be expected to exhibit low variance.

Feature extraction involves the following steps:

1. Palmprint/Soleprint segmentation: after rotational alignment, Kumar et al.
[18] extract a square fixed-sized palmprint region centered at the center-of-mass C
such that the square is completely inscribed the palm. Another method to determine
a textural region used in [34, 44] is to introduce a palmprint coordinate system
according to a line through key points referring to the inter-finger valleys V2 and
V4 (X-axis) and a line normal to the segment V2V4 through V2+V4

2 (Y-axis) as its
origin. Using this coordinate system, a fixed region is selected for extraction. In the
proposed approach, the hand coordinate system with V3 as its origin and the line
parallel to the palm boundary line through V3 as its Y-axis is used. Then, a square
region of size s equal to the average finger length (without thumb) centered in the
Y-axis at offset 0.2 · s is extracted, see Figure 5.4(a).

While the palm can be approximated by a square, the part of the foot which con-
stitutes the sole image used for feature extraction is yet to be determined. Let
B denote the binary normalised m × n footprint and let n be the height of the
foot, then the sole of the foot can be defined as the largest inscribed rectangle
R ⊂ {(x, y) : B(x, y) = 1} with given height a such that (see Figure 5.4(b)):

a = 3n
5 and R∩ {(x, y) : y < n

5 ∨ y >
4n
5 } = ∅. (5.8)

2. Region normalisation and edge detection: this processing step involves scaling
according to a predefined resolution yielding an image R, normalisation in mean and
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(a) Hand. (b) Foot.

Figure 5.4: Palmprint and Soleprint feature (variance of overlapping blocks in edge-
detected image).

variance and estimation of the first derivative of the image using edge detectors. In
the case of hand-prints the extracted region is resized to 300 × 300 as proposed by
[18], in the case of footprints to 300×600 pixels, being twice the size of hand-prints.
A normalisation of region R to a predefined mean φd and variance ρd is achieved
using the method in [18]. Each pixel intensity R(x, y) is recalculated as follows:

R′(x, y) :=
{
φd + λ if R(x, y) > φ,
φd − λ otherwise. (5.9)

where

λ =
√
ρd(R(x, y)− φ)2

ρ
. (5.10)

The implemented algorithm uses φd := 100 and ρd := 400 for hand-prints, and
φd := 100 and ρd := 200 for footprints.
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While for footprints line and crease detection is executed using 5×5 Prewitt kernels
pi in different directions (0◦, 45◦, 90◦ and 135◦), hand-prints use a 7 × 7 Prewitt
filter before downscaling to 300 × 300 pixel in order to get a better response for
fine-grained principal lines. In case of merging information of different directions,
the max-function is used, i.e. [18]:

K(x, y) = max{R1(x, y), . . . , R4(x, y)}; (5.11)

where Ri(x, y) = pi ∗ R′(x, y), i.e. the normalised image is convoluted with each of
the Prewitt kernels.

3. Feature extraction: the actual feature vector consists of an extraction of variances
of b overlapping blocks each of size 24× 24 pixel, i.e. b = 144 for hands and b = 288
for feet.

x4 :=

 σ2
1

. . .
σ2
b

 . (5.12)

5.6 Eigenpalms, Eigenfingers and Eigenfeet feature

The motivation behind the Eigenpalms + Eigenfingers and Eigenfeet feature, which are all
derived forms of Eigenfaces introduced by Turk and Pentland [37], is a method based upon
the most relevant features for classification instead of an arbitrary selection of features. In
a strict sense Eigenfingers and Eigenfeet features are a both texture-based and shape-based
approach since foot and finger silhouette information is also encoded within eigenvectors.
It is based on the K-L (Karhunen-Loeve) transform and converts original images of single
fingers, palms or feet into a set of characteristic features [44] and thus exploits the fact
that all images of a type have similar structures (e.g. all palms have principal lines, which
are extracted by the first few principal components [4]). While Eigenpalms + Eigenfingers
are reported to exhibit low error rates of 0.58% (see [7]), newly published results by
Cheung et al. [4] indicate that some published recognition rates can not be obtained in
real applications in the case of (a) larger time lapses between recordings (b) identical twins
and (c) unseen objects. Also virtual twins, i.e. matching left and (mirrored) right hand of
the same person, are reported to lead to a degradation in performance.

The main idea is to think of an image b as a m ·n dimensional vector which can be repre-
sented exactly in terms of a linear combination of principal components, i.e. eigenvectors
(also called Eigenfaces for facial images, Eigenpalms for palmprints, Eigenfingers for fin-
ger images and Eigenfeet for footprints), computed on the covariance matrix of training
images. Eigenvectors are ordered according to eigenvalues and only the ones with the l
highest eigenvalues are kept, leaving the most important features that are critical for the
recognition task. Since the calculation of eigenvectors is computationally expensive, and
in order to reduce the number of input features, typically relatively small resolutions are
selected for image input (e.g. Zhang [44] uses 128×128 palm images, but in some literature
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(a) Eigenfingers.

(b) Eigenpalms. (c) Eigenfeet.

Figure 5.5: Comparing eigenspaces calculated from a set of training images (20 hand im-
ages and 25 feet): (a) Eigenfingers, (b) Eigenpalms and (c) Eigenfeet.
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approaches starting at 64×64 pixels have also been examined, see [4]). In this work, palm-
print images are extracted using the hand-print coordinate system as introduced in the
previous section and re-scaled to 256 × 256 pixels. Individual fingers are extracted using
contour landmarks and rotationally normalised as introduced for the Shape feature. Then,
depending on its type, each finger is aligned on top position, cropped at a specific part of
its length and placed on a canvas of fixed size. All fingers except the index are cropped at
8
9 of their length h, the latter is restricted to 5

7h. Regarding the input resolution of 500 dpi,
canvas size refer to effectively supported areas of 3.25cm × 9.75cm (and 3.25cm × 6.5cm
respectively). After bilinear resizing, canvas size is 128× 384 for the longer index, middle
and ring fingers and 128 × 256 for the remaining thumb and little finger. In the case of
footprints the entire normalised footprint image is proportionally re-scaled and padded
to 128 × 256 pixels. Prior to eigenspace calculation and feature extraction, each image
should be normalised in order to compensate sensor variations between different capture
sessions [4]. While one alternative to cope with sensor variations is to normalise both
mean and variance, the proposed algorithm applies Contrast-Limited Adaptive Histogram
Equalisation [45] with a window size of 32 to each of the finger and palm images.

Feature extraction using the eigenspace-based algorithm is equal to projecting the input
image onto the appropriate feet, palm or finger space spanned by the most significant
eigenvectors. The number of eigenvectors used for this mapping process plays an important
role since more eigenvectors are also, up to a certain point, capable of capturing more
differences [44]. Typically, the number also depends on the size of the training database.
A feature size of 100 eigenvectors is reported to form a good upper boundary [4] and
outperforms feature lengths of 50, 150 and 200 in [44]. Investigations in [37] start with
small feature sizes of 7 Eigenfaces. In this work, a feature size of 25 Eigenfingers per finger
type and also 25 Eigenpalms have been selected from a training database of 25 hand-prints
of 25 different users, see Figure 5.5(a) and 5.5(b). Footprints are projected into a space
formed by 20 eigenvectors depicted in Figure 5.5(c), also obtained by a set of 20 training
images.

A computation of Eigenpalms, Eigenfingers and Eigenfeet which precedes enrolment and
matching involves the following two tasks [37]:

1. Acquisition of an initial training set of normalised m×n palm, finger or foot images
represented as vectors bi for i ∈ {1, . . . , x} from which the average image vector a is
subtracted:

ni = bi − a, a = 1
x

x∑
i=1

bi; (5.13)

2. Computation of mn×mn covariance matrix:

C = 1
x

x∑
i=1

nin
T
i = AAT ; (5.14)

and eigenvectors uk with according eigenvalues λk. For computational efficiency
often the x × x matrix ATA is used instead, since the x eigenvectors vk of ATA
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correspond to the x largest eigenvalues uk of AAT fulfilling the equation uk = Avk
and usually x is much smaller than mn.

3. Ordering and selection of l highest eigenvectors with corresponding eigenvalues.

For each image type (i.e. thumb, index finger, middle finger, ring finger, little finger, palm
and foot), an independent set of eigenvectors ui with i ∈ {1, . . . , l} and average image a

is obtained.

Feature extraction refers to a specific image type and comprises the following steps:

1. Normalisation of the palm, finger or foot vector b calculating n = b− a.

2. Projection onto the corresponding eigenspace to get the feature vector components
ωi = uTi n. I.e. palms are projected into the palm space, single fingers are mapped ac-
cording to their finger type onto the corresponding finger space and feet are projected
using the Eigenfeet vectors. The feature vector consists of exactly l components:

x5 :=

 ω1
. . .
ωl

 ; (5.15)

such that n is approximated by:

n ∼
l∑

i=1
ωiui. (5.16)

In the case of processed hands, feature vectors for each finger type and palm are
augmented.

5.7 Minutiae feature

Typical ridge structure, i.e. the outermost structural part of the epidermis, is both present
in hand-prints and footprints at high resolutions, even if no special ridge extraction device,
such as a fingerprint scanner, is used. The permanence of ridge lines being 100 − 300
micrometers in width in case of injuries or cuts is proven [21] and permits a variety of
different features. The feature described in this section refers to local Galton details,
also called minutiae, coarsely divided into Termination and Bifurcation of ridge lines and
represented by coordinate, type and ridge direction at this point [21], see Figure 5.6, with
ridges denoted as dark traces on light background. Note that in IAFIS/FBI systems, angles
are defined by the rays pointing into positive direction of the x-axis and in direction of the
ridge in case of Termination, and in direction through the middle of the intervening valleys
in case of Bifurcation [51]. Several other classes (such as Trifurcation, Lake, Island, . . . )
exist, but are not subject to extraction of the employed NFIS2 [51] extraction software
mindtct, which is designed to extract minutiae out of 8-bit grey-scale images at 500 dpi.
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Figure 5.6: Examples of Bifurcation and Termination.

(a) Hand. (b) Foot.

Figure 5.7: Minutiae feature (position, orientation and quality of Bifurcation and Termi-
nation points).
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Minutiae extraction is a sequential process, which involves binarisation, edge thinning
and the generation of specific maps supporting reliable detection. Processing steps for
binarisation-based methods are discussed in detail in [21], comparing different approaches
and documented in [51] for the employed matcher:

1. Enhancement: the goal of image enhancement is to provide better input in case of
the quality degradation types (a) ridge discontinuity, (b) not well separated ridges
and (c) cuts, creases, and bruises [21]. Image quality can be measured in forms of
contrast, orientation consistency of ridges, ridge frequency, etc. and a variety of
global and local quality indices have been proposed [21]. In order to improve image
quality, two main approaches exist, namely:

• General purpose contrast manipulation: the application of standard image-
processing techniques such as Histogram stretching, Normalisation in mean and
variance or Wiener filtering. Especially when sophisticated algorithms for fea-
ture extraction are involved, this approach is promising;

• Contextual filters: using a set of filters derived from a mother filter (e.g.
Gabor filters with different discrete frequency and orientation), each local image
region is convolved with a specific filter depending on the local context, such as
ridge orientation or frequency. This method serves local averaging to suppress
noise and fill gaps to enhance differentiation between valleys and ridges [21].

The major problem for flatbed optical fingerprints is low contrast between ridges and
valleys. In the case of difficulty in extracting orientation images reliably, a general
purpose approach improving local image contrast is favoured. However, traditional
histogram equalisation can not perform well in this case. Instead, this work follows
the proposal in Wu et al. [41] to employ Contrast-Limited Histogram Equalisation
described in [45]: local histograms are generated at a rectangular grid of points and
the mappings for each pixel are generated by interpolating mappings of the four
nearest grid points. In addition to this adaptive histogram equalisation approach,
local histograms are clipped at a level, thus restricting the slope of the histogram.

2. Generation of Image Maps: among the most frequently used image maps for
minutiae extraction is the local ridge orientation map or direction map computing
block-wise the orientation 0 ≤ θ < 180 of ridges, for example by averaging the gra-
dient ∇(xi, yi) at each point (xi, yj) [21] or row-wise summation of pixels in oriented
windows and selecting the orientation, which results in the highest response when
convolved with a set of waveforms with increased frequency [51]. NFIS2 performs
the second technique with 16 directions and 8 × 8 blocks. Blocks with low flow
are recorded in low flow maps [51]. Another map for local ridge frequency may be
acquired block-wise estimating the inverse of average distances between consecutive
local maxima within an oriented window y-axis aligned to the ridge orientation [21],
but is not used in [51]. NFIS2 also generates maps for low contrast for fingerprint
segmentation (separation from background), high curvature and quality.

3. Minutiae detection: as the first step, the input image is binarised in order to dif-
ferentiate between ridges and valleys. Typically, global binarisation is troublesome,
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therefore several local methods have been proposed [21] using the generated maps.
In [51] pixels are analysed block-wise and assigned binary values according to their
intensity with respect to a grid of 9 horizontal rows of size 7, aligned to the ridge
flow direction. The pixel is assigned white, if, and only if, the center row’s sum of
intensities multiplied by 9 exceeds the total grid’s intensity [51]. This binarisation
procedure is at the heart of minutiae extraction, since minutiae are identified directly
in the resulting image (further thinning steps reducing the width of ridges to one
pixel may be executed prior to detection). NFIS2 scans the resulting image both
horizontally and vertically to identify local pixel patterns, which can be found in
[51].

4. Minutiae filtering: typically, the number of detected minutiae exceeds the num-
ber of permanent minutiae in fingerprint images. Therefore, several structural ap-
proaches exist to eliminate or adjust minutiae in lakes and islands, holes, blocks with
neighbouring low-quality or invalid blocks, when configured in hooks (spikes protrud-
ing off the side of a valley), overlaps (ridge discontinuities), or on malformed ridge
and valley structures (too wide or too narrow) examining local configurations [51].
Additionally, minutiae quality may be assessed. An experienced weakness of the em-
ployed NFIS2 matcher is its frequent detection of false minutiae near the fingerprint’s
contour.

Prior to feature extraction, regions for fingerprint and footprint are defined at fingertips
and under the big toe, see Figure 5.7. However, sensing regions may also be defined for
other parts of the human foot and hand. For example, Rowe et al. [34] demonstrate the
successful application of minutiae features on metacarpal skin texture.

• Ballprint region: after rotational alignment of the footprint, a rectangular region
of fixed size w

2 ×
h
6 is extracted centered at B = (3w

4 ,
3h
12 ), where w, h are the width

and height, respectively, of a bounding box circumscribing the input footprint.

• Fingerprint regions: each fingerprint is extracted as a rectangular area of fixed
size w× h

3 (and w× h
2 for the thumb, respectively) aligned with respect to the major

axis of the finger circumscribed by its w × h sized bounding box.

These regions are enhanced using the technique of Contrast-Limited Histogram Equalisa-
tion (in case of fingerprints) and simple global Histogram stretching (for ball-prints). Since
a duality between the minutiae types Termination and Bifurcation exist, an inversion of
the grey level in the input image only causes a switch in minutiae types [21], but does
not further degrade matching, when performed consistently. The output of the mindtct
extraction software is a minutiae descriptor file containing position, angle and quality in-
formation (xi, yi, θi, qi) for each detected minutiae point mi for i ∈ {1, . . . , c} within the
input image in JPEG Lossless format:

x6 :=

 m1
. . .
mc

 . (5.17)

In the case of fingerprints, feature vectors are augmented.
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The purpose of the matching module is to compare two given feature vectors and re-
turn either a degree of similarity or dissimilarity represented by a score. Generally, little
may be assumed concerning the scores retrieved from a matcher, except that they are
monotonically increasing with higher probability of the corresponding null hypothesis [1],
introduced in Chapter 2. Also, the output of matchers need not lie on the same numerical
scale and may follow different probability distributions [33]. In this work, normalisation
techniques are applied in order to achieve a discrete similarity score si ∈ N ∩ [0, 100] for
each matcher Si with 1 ≤ i ≤ r.

In some cases, matching may also incorporate score fusion of different independent match-
ers or decision estimating whether the input templates refer to the same person (in verifica-
tion mode) or a determination of the identity, if it is known to the system (in identification
mode), see [21, 33]. The latter two decision tasks are typically executed in a separate de-
cision module. Since multiple biometric features are incorporated in this work, there are
several possible information fusion mechanisms for matching, according to [32], namely
(a) fusion at feature extraction level, (b) fusion at matching score level and (c) fusion at
decision level. In this work, techniques from both categories (b) and (c) are applied. It is
important to note that beside the fusion of all different matchers yielding a total matching
score for the hand-print and footprint system, each individual matcher may itself com-
bine the result of multiple invocations of single matchers. This is the case in fingerprint
matching combining minutiae scores of single fingers.

The task of the decision module within a score-level-based multibiometric system in veri-
fication mode is to consolidate the vector of matching scores s = (s1, . . . , sr) of r different
matchers (classifiers) Si for i ∈ {1, . . . , r} obtained by matching the biometric sample X
with a stored claimed identity I and returning one of the classes {genuine, imposter} [33].
More precisely, each matcher uses a specific feature vector xi extracted from X and com-
pares this evidence with a stored feature vector template ii of subject I. Without fusion,
the class genuine is returned, if Si(xi, ii) ≥ η, i.e. the matching score exceeds a threshold,
see Chapter 2. With score level fusion, the Bayesian minimum error-rate classification
rule applies [33]:

assign X → genuine ifP (genuine|s1, . . . sr) ≥ P (imposter |s1, . . . sr). (6.1)

That is, the input pattern X is assigned to the class genuine, if, having the evidence
of observed scores s1, . . . sr, its posterior probability is larger than for the class imposter .
Note, that there is already an approximation using scores instead of feature vectors, which
is only reasonable in case of very small matching errors [33]. In identification mode, the
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decision module assigns the input sample to one of m+ 1 classes corresponding to the m
enroled identities in the system databaseM and a class reject representing unseen objects
[21]. Rule (6.1) is generalised as the selection of a class ωj among classes {ω1, . . . , ωm+1}
in [33] as follows:

assign X → ωj ifP (ωj|s1, . . . sr) ≥ P (ωk|s1, . . . sr) ∀k ∈ {1, . . . ,m+ 1}. (6.2)

Since score-based identification usually involves an invocation of the matching module
for each of the enroled members, this work concentrates on multimodal score level fu-
sion in verification mode (i.e. multiple scores are combined into a single consolidated
matching score for an individual match). However, the application of hierarchial classi-
fier combination schemes in identification architectures may further reduce computational
requirements [21].

When applying fusion at the decision level, the fusion module is integrated into system
design after the decision module operating on single-matcher data. That is, binary class-
membership information d ∈ {genuine, imposter}r is consolidated (in case of verification)
[32]. In identification mode, the binary decision vector is generalised to a member of
the set {ω1, . . . , ωm+1}r. Fusion at this level is regarded to be most simple, and is thus
frequently applied. Examples for multimodal systems can be found in [33].

6.1 Overview

Table 6.1 lists all employed matching classifiers (and intra-matcher fusion techniques).
The employed matchers may be coarsely divided into:

• General-purpose matchers: employing metrics or distances directly on the fea-
ture vectors. Also dynamic time warping falls into this category, since it may be
applied to arbitrary time-series. Algorithms using matchers of this type are Shape
(foot), Fingerlength, Toelength, Palmprint, Soleprint or Eigenfeet. To mention just
a few examples in the literature: Hausdorff distance on contours [43] or (weighted)
Euclidian distance in eigenspace [44].

• Context-sensitive matchers: taking the composition of the feature vector into
consideration and interpreting data. This allows pairwise alignment of extracted
features prior to distance calculation, e.g. in fingerprint matchers [21]. The Minutiae
algorithm applies a context-sensitive matcher.

• Hybrid matchers: here, feature vectors are first decomposed into context-dependent
components and general-purpose matchers or further context-sensitive matchers are
applied to each of the sub-components. Many of the fusion-based matchers fall into
this category, such as Silhouette, Shape (Hand) and Eigenpalms + Eigenfingers.
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Algorithm Hand Foot

Silhouette

dynamic time warp matching of
silhouette, normalised distance for
length and enclosed area for each
finger, fusion of individual fingers
using Sum Rule

dynamic time warp matching of
silhouette, normalised distance for
length and enclosed area

Shape
classifier based on Manhattan dis-
tance, fusion of individual fingers
using Sum Rule

classifier based on Manhattan dis-
tance

Fingerlength/
Toelength

classifier based on weighted Euclid-
ian distance

classifier based on weighted Euclid-
ian distance

Palmprint/
Soleprint

classifier based on Euclidian dis-
tance

classifier based on Euclidian dis-
tance

Eigenpalms and
Eigenfingers/
Eigenfeet

classifier based on Manhattan
distance, fusion of individual nor-
malised eigenspace-scores using
Product Rule

classifier based on Manhattan dis-
tance

Minutiae

classifier based on NIST [51]
bozorth3 matcher, fusion of
individual normalised eigenspace-
scores using Max Rule

classifier based on NIST [51]
bozorth3 matcher

Table 6.1: Employed matching techniques for hands and footprints.

6.2 Minutiae matching

Typically, when different minutiae sets have to be compared, an alignment between both
sets has to be achieved. This may be aggravated by (a) different rotation and translation
(b) only partial overlap or (c) non-linear distortion [21]. While the first two restrictions are
troublesome to fingerprint sensors, when applying the preprocessing presented in Chapter
4, only non-linear distortion remains a serious problem. Since finger alignment using the
major axis of the finger already provides a good pre-alignment, the problem of different
rotations within extracted fingerprints is not present when normalised hand images are
used. Also the overlapping area almost corresponds to the entire fingerprint, except for
the thumb image, which usually depicts a side view depending on the abduction of the
pollex. This is expected to result in a performance degradation for this finger, which is
reported in [34]. Also for footprint images, a pre-alignment can be achieved by using
foot contour information. When the matching algorithm is aware of the fact that images
are pre-aligned, matching accuracy may be increased. In this work, however, an existing
generic minutiae matching algorithm is applied. Of course, small displacements are always
present, and, according to Maltoni et al. [21], pressure, skin condition, noise, and feature
extraction errors may lead to imperfect pre-alignments, which need to be compensated for
by a proper matching software.

Alignment of two minutiae sets M1,M2 containing position and orientation information
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6 Matching and Decision

of minutiae (and possibly also type and quality, as provided by mindtct [51]) is executed
by estimating a pairing of matching minutiae. Maltoni et al. give an overview of the
problem in [21]: considering only the first two properties, two minutiae may be matching
if their spacial and directional difference does not exceed a system-defined threshold t, α,
i.e. for mi = (xi, yi, θi) ∈ M1, nj = (x′j, y′j, θ′j) ∈ M2 a relation ↔ can be defined as
follows:

mi ↔ nj ⇔‖
(
xi
yi

)
−
(
x′j
y′j

)
‖< t ∧min{|θi − θ′j|, 360− |θi − θ′j|} < α. (6.3)

The minutiae-alignment problem corresponds to finding the transformation (with respect
to a model, e.g. affine transformations), leading to the maximum number of matching
minutiae, when applied to one of the minutiae sets. Note, that since the relation not nec-
essarily reflects a 1 : 1 mapping, the pairing function determining minutiae correspondence
is also unknown and has to be determined (e.g. by exhaustive searching) [21].

Within the employed Minutiae algorithm, matching is executed using the provided matcher
within the NFIS2 suite, bozorth3, see [51] for details. Score normalisation is executed
after each invocation of the matcher and single scores are combined using the Max Rule
(i.e. the maximum of all observed scores is returned). In contrast to [34], the score of a
single finger is not combined with other algorithms, but the consolidated score is subject
to fusion. The Max Rule method provides good results even if single fingers exhibit bad
quality as long as one fingerprint can be matched well.

6.3 Dynamic time warp matching

Euclidian or Manhattan metrics demand vectors with equal dimensions. In the case of the
Silhouette algorithm, the feature vector of contour distances to the centroid represents a
variable-length series needed to be aligned before matching. This sequence alignment in
one dimension can be achieved in an optimal sense by matching the series non-linearly
using the dynamic time warping technique:

Given are two (feature) vectors a ∈ Rn, b ∈ Rm of possibly different dimensions n,m, which
need to be aligned. Dynamic time warping [25] computes an optimal match between a and
b using a cost function C for the comparison of two components ai and bj at the indices
i and j respectively. This implementation uses:

C(i, j) := (ai − bj)2. (6.4)

The optimal minimum distance with respect to the cost function is calculated iteratively
by evaluating D(n,m):

D(i, j) :=



0 if i = 1, j = 1;
C(i, j) +D(i− 1, 1) if i > 1, j = 1;
C(i, j) +D(1, j − 1) if i = 1, j > 1;
C(i, j) + min(D(i− 1, j),
D(i, j − 1), D(i− 1, j − 1)), otherwise.

(6.5)
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(a) Visual silhouette contours: reference (left)
and sample (right).
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(b) Reference contour.
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(c) Sample contour.

Figure 6.1: Footprint-contours with a missing part in the sample of a genuine user.

The main motivation for using dynamic time warping is better tolerance of missing parts
in the silhouette, see Figure 6.1. This is the most likely case in foot biometrics, when
inter-toe valleys are clipped by touching toes. Since the Silhouette feature vector also
contains components for length and area of the contour, only the first n− 2 components
of each feature vector with length n are matched using this technique. For the remaining
components, a simple absolute distance is calculated and normalised. A common score can
be achieved by the Product Rule or Sum Rule. Results for individual fingers are combined
using the Sum Rule.

6.4 Score level fusion

Score level fusion differs from decision level fusion in the availability of matching scores
of individual matchers. But unlike fusion at feature extraction level, no direct access to
feature vectors is granted. Instead the posteriori probabilities P (genuine|s1, . . . sr) and
P (imposter |s1, . . . sr) in Rule (6.1) have to be estimated. According to [33], there are
three different techniques for this task:

• Density-based fusion: estimating the posteriori probabilities from genuine and
imposter distribution densities P (si|genuine) and P (si|imposter) of single matchers
using parametric and non-parametric methods with the Bayesian inference rule.
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6 Matching and Decision

Given k ∈ {1, 2} and ω1 = genuine, ω2 = imposter , and let P (ωk) denote the prior
probability of class ωk, then [33]:

P (ωk|s1, . . . sr) = P (s1, . . . sr|ωk)P (ωk)
2∑
l=1

P (s1, . . . sr|ωl)P (ωl)
. (6.6)

• Transformation-based fusion: Rule (6.1) is an approximation as no feature vec-
tors, rather matching scores, are used for the inference. When no large amounts of
training data are available, such as is the case in this work, combination rules are
executed on normalised scores, see [32]: normalisation being a mapping of matching
scores to a single common domain is necessary in order to be able to compare scores
of different matchers. A common normalisation technique is min-max normalisation,
which is a simple linear mapping of the score interval [x, y] to [0, 1], where x, y refer
to the minimum and maximum scores obtained by matching a training set of data
[33]. Unless otherwise stated, I have applied this linear mapping technique. Due to
the small size of available training data for distance scores parameter x has been set
to 0 (matching the template with itself) and parameter y has often been rounded
up or manually adjusted (to better fit the score distribution). For more elaborate
approaches on score normalisation I refer to [33].

• Classifier based score fusion: these refer to learning-based solutions estimating
the posteriori probabilities from scores.

Assuming statistical independence of individual matchers (which is most likely the case
when different modalities are combined) five prominent classifier combination rules have
been identified, namely Product Rule, Sum Rule, Max Rule, Min Rule and Median Rule
[33]. Note, that in case of the applied transformation based fusion, in a strict sense,
classifier combination rules do not have a probabilistic interpretation any more [33]. Nev-
ertheless, the first three methods used for fusion purposes in this work, will be introduced
with their statistical background:

• Product Rule: being very sensitive to single classifiers returning small scores,
and assuming equal prior probabilities P (genuine), P (imposter), this rule can be
formulated as follows [33]:

assign X → genuine if
r∏
j=1

P (genuine|sj) ≥
r∏
j=1

P (imposter |sj). (6.7)

The Product Rule returned the best result of score-based fusion techniques in [34] for
the fusion of directional palmprint bands. In this work, the Product Rule is applied
for the fusion of Eigenfinger scores and Eigenpalm scores.

• Sum Rule: the basic assumption for this rule is that posteriori probabilities do not
differ much from the prior probabilities. Again, assuming equal prior probabilities
the rule can be formulated as follows [33]:

assign X → genuine if
r∑
j=1

P (genuine|sj) ≥
r∑
j=1

P (imposter |sj). (6.8)
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This rule is frequently applied and is claimed to outperform the other rules for many
applications related with hand biometrics, see [21]. For example, in Kumar et al.
[19], it is used for the fusion of fingerprint, palmprint and hand geometry. Sometimes,
weights are introduced to emphasise scores provided by more accurate matchers, for
example Rowe et al. [34] employ fingerprint and palmprint fusion using the Weighted
Sum Rule with weights 0.25 for palmprint and 0.85 for fingerprint. It is used for the
combination of Shape and Silhouette scores for each finger.

• Max Rule: this rule is derived from the Sum Rule by using the maximum summand,
i.e. for equal prior probabilities the new rule is [33]:

assign X → genuine if rmax
j=1

P (genuine|sj) ≥
rmax
j=1

P (imposter |sj). (6.9)

Since this rule is designed to consider the highest posteriori probability of single
matchers, it is (in contrast to the Product Rule) tolerant to single bad quality results,
e.g. for single bad quality fingerprints. Therefore, scores of single fingerprint matches
in this thesis are combined using the Max Rule.

6.5 Decision level fusion

Decision level fusion, also known as fusion at the abstract level [33], considers only clas-
sification information of single matchers. It is therefore easy to apply, as no assumptions
about matchers or distributions are made. Earlier combination is often favoured, since it
is assumed to contain more information, and thus be more effective [21]. However, this is
not always true, as Kumar et al. [18] point out: their results show, that fusion at decision
level outperforms fusion at representation level at least for their multimodal palmprint
and hand geometry system.

In verification mode, decision level fusion uses the classes O := {genuine, imposter}. But
the following rule may also be applied to identification systems returning a matching
identity. In this case, O = M ∪ {reject}, where M is the system database of enroled
identities.

While also And rule and Or rule, based on boolean operators on decision vectors, are
possible fusion techniques [33], the most popular rule for fusion at decision level is the
Majority Vote Rule. This rule assumes the equal performance of each of the employed
matchers and selects the class with the majority of “votes”. Let the number of matchers r
be odd, let d ∈ Or be the decision vector and let C : Or×O×{1, . . . , r} be the supporting
function (see [33]):

C(d, ω, j) :=
{

1 if dj = ω;
0 otherwise. (6.10)

The Majority Vote Rule can be defined as follows (see [33]):

assign X → ω if
r∑
j=1

C(d, ω, j) ≥ r + 1
2 . (6.11)
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6 Matching and Decision

In case of an odd number of matchers in verification mode it is clear that such a class ω
always exists. In identification mode, when no such class is found, reject is returned [33].
The Majority Vote Rule can easily be extended by introducing weights to the supporting
function, thus yielding the Weighted Majority Vote Rule.

Note, that fusion does not always improve results, as is pointed out in [21]: in the case
of combining strong and weak biometrics using the And Rule or the Or Rule, the overall
performance will be reduced. Also fusion of positively correlated classifiers may lead to
higher error rates.
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Each evaluation starts with a set of questions to be addressed. Having designed a single-
sensor hand and footprint-based multimodal biometric system, a number of tests have
been executed in order to investigate the following issues:

• Question 1: “Which recognition accuracy can be achieved when combining multiple
modalities on a single-sensor basis for hands?” This question targets a quantifica-
tion of accuracy for both systems in terms of the introduced performance measures in
Chapter 2. Parts of this issue are already addressed by Rowe et al. [34] and Kumar
et al. [18, 19], who have proposed and implemented single-sensor hand-based multi-
biometric systems. This work extends the considerations to a variety of additional
features and assesses the ability to produce high-performance biometric protocols
for commercially available flatbed scanners.

• Question 2: “Can different techniques from hand geometry, palmprint and finger-
print biometrics be successfully applied to a foot biometric system?” Whilst the first
question concentrates on hand biometrics, this question aims to provide an overall
performance assessment for footprints. Additionally, the performance degradation
of individual features in case the same technique is applied to feet instead of hands
(with all employed modifications) is addressed.

• Question 3: “Do high-resolution features (e.g. Minutiae) show significantly better
performance than low-resolution features (e.g. Eigenfeet, Eigenpalms + Eigenfin-
gers)?” This question focuses on a separately conducted relative comparison be-
tween employed algorithms for hand-based and footprint-based systems to identify
the most suitable features of applications. These are characterised by both low error
rates and high throughput. Since scanning time depends on resolution, as observed
in Chapter 3, the trade-off between accuracy and throughput is the subject of interest
for this question.

• Question 4: “Which of these features allows reliable identification?” Biometric
system evaluation is focused on testing systems in verification mode estimating ROC
curves and comparing error rates [1]. In applications however, identification mode
has many advantages, since it is completely independent of physical possessions
or knowledge [14]. Especially for the target domain of footprint-based biometric
systems, i.e. wellness areas and spas, this advantage is worth taking into account
when considering the overall system’s performance in identification mode. Due to
the fact that for some of the features (e.g. hand geometry-based features) scalability
issues exist [14], only the three best performing algorithms were selected for (positive)
identification mode assessment consisting of two experimental setups:
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– Prepaid architectures: Here, a database of all customers having paid for
a service exists. This corresponds to simple classification into members and
non-members according to Hypotheses (2.6) and (2.7). Results are depicted in
form of an ROC curve.

– Pay-per-entry architectures: This setup requires the determination of the
identity of the person claiming access in order to reliably charge for the service.
Since the implemented system may be classified as a ranking system based
on scores, its ranking behaviour is analysed estimating rank probability mass
functions, see [1].

• Question 5: “Which of the fusion rules performs best when combining multiple fin-
gerprints in a single-sensor environment?” Fingerprints are reported to exhibit high
levels of discriminating information [21] and numerous studies about individuality
exist, such as [12]. Thus, it is also expected to contribute to a high extent to the
overall matching result addressed by Question 1. When multiple fingerprints can be
acquired simultaneously, it is interesting to see which of the standard fusion rules
Max Rule, Sum Rule and Product Rule performs best. Also individual fingerprint
performance is addressed, like in Rowe et al. [34]. In contrast to this approach,
which uses just the ring finger’s matching score for fusion with different modalities,
this work employs the combined score of all fingerprints.

7.1 Test setup

For the evaluation of footprint-based biometric systems, employed test-databases in the
literature are rather small. For example, Nakajima et al. [26] use 110 samples of 11 users
over the period of 1 month, Jung et al. [15] use 300 samples of 5 users captured at the
same time for testing. Thus, results are difficult to compare directly. For hand-based
biometrics, the situation is different, since several open databases for single modalities
exist (such as [54, 49]), but are not applicable to the employed single-sensor approach.
Due to the absence of large-scale publicly available footprint databases and databases
providing a whole-hand image at a reasonable resolution, all data used for experiments in
this thesis has been collected from volunteers at the University of Salzburg, Austria.

For both footprints and hands, a high-resolution test data set (the test database DB1 for
hands and DB2 for footprints) with multiple impressions per identity has been recorded.
Separate training data sets with a smaller number of users and lower resolution were
employed for computation of Eigenfeet, Eigenpalms and Eigenfingers matrices. Samples
were captured using the HP Scanjet 3500c flatbed image sensor I have introduced in
Chapter 3.

Recording conditions for test databases DB1 and DB2 are as follows: Each of the acquired
footprint and hand samples per user is recorded with the user sitting in front of the
scanning device, which was situated on the floor for feet and on a table for hands. Only
the right foot or the right hand is acquired. Footprints are not heavily loaded with
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full weight and also hands are taken without pressing the object onto the surface of the
flatbed scanner. For footprints, before image capturing, the scanning device and sole
are cleaned. In case of hands, only the scanning surface is cleaned after each user. All
samples were captured in a shaded room for footprints and inside a box for hands in order
to minimise the influence of environmental light. The recording interval is a fixed time-
span of fifteen minutes per user. Within this time, five scans are taken with respect to a
certain acquisition protocol, see Section 7.1.2.

7.1.1 Test databases

The following two databases have been acquired to form the test basis for experimental
evaluation.

1. Hand test database (DB1): This database consists of 443 right-hand samples of 86
people (∼ 5 samples per person) captured at the Department of Computer Sciences,
University of Salzburg, Austria. With a gender balance of 82.4% male versus 17.6%
female samples, templates from both sexes are represented in this data set. Each
template exhibits a dimension of 4250× 5850 Pixels at 500 dpi and 8-bit grey-scale,
which results in a storage requirement of 23.7 MB (uncompressed) per sample.

2. Footprint test database (DB2): With 160 right-foot samples of 32 people (5
samples per person) captured at the Department of Computer Sciences, University
of Salzburg, Austria, this database is similarly gender balanced like DB1 with 84.4%
male and 15.6% female samples. In contrast to DB1, image size is regulated manually
using the provided preview function. Thus, dimension is sample-dependent between
2566× 5952 Pixels (14.5 MB uncompressed, smallest) and 3880× 6972 Pixels (25.7
MB uncompressed, largest). All samples were captured at 600 dpi and 8-bit grey-
scale.

7.1.2 Acquisition protocol

For reproducibility of recordings, the following acquisition protocol has been employed for
DB1,DB2:

1. Verification of recording conditions: in the case of hand captures, users are free
to take off any rings or watches, should they desire. For the acquisition of footprints,
users are requested to take off shoes and socks and advised to preclean their sole. In
either case, users are rejected, if they wear a band-aid, or equivalent.

2. Instruction: for the capture of hand images, users are instructed to put their right
hand into a box containing a scanner and to touch the surface of the sensor. Users
are advised to spread their fingers and choose an arbitrary position (slight rotations
allowed) and try not to move during acquisition. In case of footprints, users are
instructed to put their foot onto the scanner without pressing down and asked to
try not to move during acquisition.
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3. Scanning process: Footprint scans are manually previewed, hand scans are con-
ducted automatically with default settings.

4. Evaluation: After image acquisition, each user is advised to remove his/her hand or
foot from the sensor and is shown his scanned hand or foot on a monitor. For DB1,
images are always stored with increased image counter, even if recording instructions
are violated (in contrast to DB2, where images may be rejected by the instructor).
If a user has violated recording guidelines, recording steps are repeated. The same
procedure is executed until at least 5 samples have been acquired per user.

7.2 Hand matching

Within the following section, I conduct both verification and identification experiments
using the implemented hand-based biometric system. First, Question 1 is investigated re-
garding overall verification performance. Within this context, Question 5 is also addressed
by examining the ROC curve of single-finger minutiae matchers and the fusion strategies
Sum Rule, Max Rule, Product Rule. Then, identification performance for hands, relating
to Question 4, is examined.

When combining the performance of various algorithms, a common performance measure
has to be selected. Typically, the application determines the appropriate choice of a thresh-
old depending on desired security and convenience [1]. For an application-independent
comparison of algorithms, competitions like the FVC2006 [50] have proposed a number of
measures to compare different algorithms, like the EER, which is most frequently applied
in the literature. However, in the case of the employed matchers an exact estimation of
the EER is difficult, since the employed system thresholds are natural numbers. Thus,
the MinHTER performance measure is employed for comparison. This indicator can be
calculated easily and makes it possible to compare algorithms using a single value. Al-
ternatively, matching performance could also be assessed selecting for each algorithm the
operating point with closest distance to the first median, i.e. which is closest to a virtual
operating point yielding EER.

7.2.1 Verification performance

Inter and intra-class variability with respect to the employed features is assessed with
a cross-comparison of available templates, yielding 884 genuine attempts (each hand is
matched against the remaining images of the same subject) and 92212 imposter attempts
(each hand is also compared against images of all other subjects) on the test set of DB1.
Due to enrolment errors caused by close fitting fingers and the inability of the algorithm
to extract fingers reliably, for example, 11 of the 443 images were rejected, i.e. FTA is
2.48%. These samples are no longer considered in matches, thus I explicitly state the use
of FMR,FNMR, which in contrast to FAR,FRR does not include normalisation errors
[22]. Genuine and imposter score distributions (see Chapter 2) obtained for the employed
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Algorithm
Hand Foot

MinHTER ZeroFMR ZeroFNMR MinHTER ZeroFMR ZeroFNMR

Silhouette 8.77% 80.88% 53.41% 25.94% 98.12% 100%
Shape 4.71% 70.02% 25.64% 5.72% 51.88% 43.82%
Fingerlength/ Toelength 8.12% 80.54% 100% 23.56% 82.19% 100%
Palmprint/ Soleprint 3.7% 34.73% 100% 19.21% 64.06% 100%
Eigenpalms + Eigenfin-
gers/ Eigenfeet 1.18% 14.93% 10.81% 2.21% 59.38% 8.94%

Minutiae 0.12% 1.13% 16.5% 2.67% 12.81% 97.72%
Fusion of 3 best algo-
rithms

3 · 10−3% 0.23% 6 · 10−3% 0.41% 7.81% 6.77%

Table 7.1: Verification results for the employed algorithms and Weighted Sum Rule fusion.

hand-based algorithms are depicted in Figure 7.1. Receiver Operating Characteristics are
illustrated in Figure 7.2 for both hand and footprint-based systems in order to visualise
performance differences. A collection of all MinHTER,ZeroFMR and ZeroFNMR values
for the verification task is given in Table 7.1.

The first feature to be discussed is the Silhouette algorithm, which can be classified as a
hand geometry-based feature. Since features derived from hand geometry are known to
contain little discriminative information [14], its expected performance is very low. In the
literature, EER values exceeding 4% [28] and MinHTER values exceeding 7% have been
reported [18, 19] for Shape-based and geometrical features in multibiometric single-sensor
systems. Also for systems exclusively designed for hand geometry, error rates are rather
high, see Table 2.2. This expectation is confirmed by the verification experiment. The
Silhouette feature exhibits the worst MinHTER of 8.77% at threshold t = 52.

The Shape feature for single fingers performs best of all algorithms in the class of geomet-
rical features, even though it has the smallest feature vector size of only 15 components.
From Figure 7.1(b) one can see that the genuine and imposter score distributions for Shape
are better separated than for Silhouette and Fingerlength yielding the lowest ZeroFMR
and ZeroFNMR values of all three algorithms. Its MinHTER is equal to 4.71% at threshold
t = 87.

The Fingerlength algorithm performs slightly better than Silhouette in terms of MinHTER
performance, a rate of 8.12% can be reported for threshold t = 71. However, the intervals
for genuine and imposter scores are overlapping to a large extent, such that ZeroFNMR is
even higher than for the Silhouette algorithm. From the manual inspection of matching
results, a problem causing low genuine scores is constituted by different abductions of
the thumb. These cause differences in finger length of index and thumb. In addition,
occasionally, finger parts can not be detected reliably.

Texture-based features tend to exhibit high accuracy. As the Palmprint feature is ex-
tracted in an analogous manner to [18] (except for different preprocessing and normali-
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(a) Silhouette feature.
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(b) Shape feature.
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(c) Fingerlength feature.
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(d) Palmprint feature.
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(e) Eigenpalms + Eigenfingers feature.
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(f) Minutiae feature.

Figure 7.1: Genuine and imposter score distributions of hand-based features for the veri-
fication mode experiment.
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(a) Hand-based algorithms.
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(b) Footprint-based algorithms.

Figure 7.2: Comparison of Receiver Operating Characteristics in verification mode for (a)
hands and (b) footprints.
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sation parameters), I expected a performance similar to the reported 3.27% MinHTER.
Observed results slightly deviate from this rate with a reported MinHTER of 3.7% at
t = 43. This rate is the third best reported accuracy in terms of MinHTER for the em-
ployed algorithms. However, despite its good performance when inspecting the ROC curve
in the area near EER of equal security and convenience requirements, it is less suited for
applications demanding low FNMR.

Fusion-based Eigenpalms + Eigenfingers-based recognition delivers extremely accurate
results with a MinHTER of 1.18% at t = 44. It exhibits the lowest ZeroFNMR of all
of the employed algorithms and is thus the best choice, when user convenience is most
important. Compared to the approach in [44], the observed error rate is higher (see Table
2.2). This might be caused by the relatively small number of features, namely 25 in
contrast to 100.

Finally, the fusion-based Minutiae feature provides the best result. The MinHTER of
0.12% at threshold t = 15 is an order of magnitude smaller than the second best algorithm
for the verification task.

If the three best performing single features Palmprint, Eigenpalms + Eigenfingers, and
Minutiae are combined, overall system accuracy may be increased with the use of appro-
priate fusion rules presented in Chapter 6, namely Weighted Sum Rule at matching score
and Majority Vote Rule at the decision level. I have selected these two fusion strategies
because they are frequently applied in literature and have already been previously used
for the successful fusion of hand-based modalities [18, 19, 34]. The best fusion results
are provided by the Weighted Sum Rule using the weights 0.18 for Palmprint, 0.20 for
Eigenpalms + Eigenfingers and 0.62 for Minutiae: a MinHTER of 3 · 10−3% at t = 24,
which represents the operating point of ZeroFNMR (6 · 10−3%) can be observed. Also the
ZeroFMR of 0.23% at t = 25 is lower than the corresponding rate of each individual fea-
ture. The Majority Vote Rule performs worse with an operating point at FMR = 7 ·10−2%
and FNMR = 0.45% corresponding to a half total error rate of 0.26% , which is even higher
than for the single Minutiae feature.

Finally, Question 5 is addressed by examining the ROC curve depicted in Figure 7.3. As
can be seen, performance results returned by single fingers using the bozorth3 matcher
are quite different: the index finger exhibits the best MinHTER value of 0.98%, followed
by middle (1.22%), ring (1.75%), thumb (2.63%) and little finger (7.64%). This is in-
teresting, since Rowe et al. [34] rank the ring finger as the best and the thumb as the
worst performing region. A reason for this unexpected behaviour may be caused by the
definition of the fingerprint region used for minutiae extraction. The region’s size depends
on an estimate of the corresponding finger length in this work. In order to identify the
best-performing standard fusion rule (Max Rule, Product Rule, Sum Rule), all scores of
individual matching results have been combined accordingly and evaluated in verification
mode. Since returned scores are discretised in our case and rather low for the Product
Rule, important discriminating information would be lost during this discretisation pro-
cess. Therefore, the Product Rule has been modified by the application of the fourth-root
function before discretisation. This leads to a better separation of genuine and imposter
results in the case of discrete scores. Results are as follows: the Max Rule performs best
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Figure 7.3: Receiver Operating Characteristics in verification mode for minutiae scores
obtained when matching individual fingers and using different score level fusion
rules.

with 0.12% MinHTER, followed by the Sum Rule with 0.17% MinHTER and the (mod-
ified) Product Rule with 0.22% MinHTER. Nevertheless, each of the employed rules is
able to improve recognition accuracy.

7.2.2 Identification performance

Since algorithms with large error rates in verification mode are hardly scalable to iden-
tification applications, only the algorithms Palmprint, Eigenpalms + Eigenfingers and
Minutiae have been selected for identification performance evaluation. In order to operate
with both seen and unseen objects, the initial test database DB1 has been divided into a
set of enrolment templates and test templates. The first successfully processed image of
each of the first 36 male users and 7 female users, i.e. half of the available set of subjects,
is selected as enrolment template. This leads to a total number of 177 genuine identifi-
cation attempts (each attempt yields 43 comparisons with each of the enroled member
templates) and 212 imposter identification attempts.

When assessing the prepaid-scenario, the performance ranking of the three employed
algorithms does not change. The minutiae-based algorithm still performs best with a
MinHTER of 0.47%, followed by Eigenpalms + Eigenfingers with 4.14% and Palmprint
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Figure 7.4: Identification performance using hand-based features by means of (a) Receiver
Operating Characteristics for the prepaid scenario (b) rank probability mass
functions for the pay-per-entry scenario.

with 10.88%, see Figure 7.4(a) for details. Using a Weighted Sum Rule for matching score
fusion with weights 0.01 (Palmprint), 0.07 (Eigenpalms + Eigenfingers) and 0.92 (Minu-
tiae) an ideal classification with no errors can be achieved at threshold t = 18. Finally,
while Minutiae and Eigenpalms + Eigenfingers are suited for identification, the Palmprint
feature does not contribute much to fusion results and as a single feature it is not suited
at all for the prepaid-scenario.

For the pay-per-entry scenario evaluation only genuine comparisons are accounted. The
recognition accuracy of the full-automatic identification scenario considering only the first
position of the ranking vector is observed to be 93.78% for Palmprint, 98.87% for Eigen-
palms + Eigenfingers and 100% for the Minutiae feature. Again, minutiae-based bio-
metrics proves to be the most accurate modality for identification. Recognition rates for
further ranks, possibly considered for semi-automatic identification are depicted in form
of a rank probability mass function in Figure 7.4(b).

7.3 Foot matching

Having executed a verification and identification experiment on hand images, the following
section examines the performance of the same algorithms in case of footprints. The main
task of this investigation is to find an answer to Question 2 examining the performance
differences between hands and feet as input images. In addition, Question 5 is addressed
measuring the performance in pay-per-entry and prepaid scenarios for access control in
public baths using images of the human foot. As the performance measure of choice, the
MinHTER is again employed for comparison.
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7.3.1 Verification performance

The employed database for footprint verification experiments, DB2 is much smaller than
DB1, yielding totally 320 genuine and 12400 imposter comparisons. No enrolment errors
were reported, thus FTA = 0%. Genuine and imposter score distributions are diagrammed
in Figure 7.5.

Silhouette shape is a volatile feature and shows an extremely high MinHTER of 25.94%
at t = 64, which is approximately three times larger than the reported rate for hands. In
contrast to the application on hand images, missing contour parts caused by close-fitting
toes cause low genuine matching scores, even though dynamic time warping is applied.
Together with the Toelength algorithm this geometric feature is not suitable for verification
as a single feature.

In contrast to all other geometrical algorithms, the Shape feature is least affected by
performance degradation when compared to hand biometrics, with a reported MinHTER
of 5.72% at t = 90. It is even outperforming the textural Soleprint approach in case of
footprints and also close to the performance of textural features in case of hands.

Length of toes and inter-toe angles for footprint-based verification are less distinctive than
length and width of fingers, since inter-toe valleys are more difficult to extract reliably
(caused by close-fitting toes at the absence of pegs). The performance of the Fingerlength
feature is degraded by a factor close to 3 compared to Toelength, yielding a total result
of 23.56% MinHTER at t = 71 for Toelength. Thus, this feature is not satisfying for the
biometric verification task.

At first glance, for the Soleprint feature similar performance for both hand and footprint
images can be expected. But indeed, rates are five times larger than in case of foot-
prints, yielding a MinHTER performance of 19.21% at t = 65. When inspecting extracted
soleprint images, a problem for the reliable extraction of permanent footprint lines can
be identified: creases caused by slight rotations of the footprint cause a degradation in
performance. Furthermore, the absence of typical expressive lines and textile defilement
(due to participants wearing socks) are challenges for texture-based footprint matching.

The best feature for footprint-based personal recognition turned out to be the Eigenfeet
feature. Without the need for highly resolved input images, it still produces high accuracy
with a performance of 2.21% MinHTER at t = 68 and yet uses small-sized feature vectors
of 160 bytes. It’s accuracy is worse than the corresponding result for hand images, however
taking into account that in the case of hands, a fusion-based feature of both Eigenpalms
and Eigenfingers is used, the performance is quite satisfying. However, time lapses and
different recording conditions, such as under-water capture deserve further attention.

While the Minutiae feature does not outperform the eigenspace-based Eigenfeet feature for
footprints in terms of MinHTER (its matching accuracy of 2.67% at t = 7 is slightly larger
than for Eigenfeet), it continues to be the ideal candidate for high-security applications
with a ZeroFMR of 12.81%. This rate is significantly lower than for all other footprint-
based algorithms, as can be seen from Table 7.1. However, the performance degradation,
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Figure 7.5: Genuine and imposter score distributions of footprint-based features for the
verification mode experiment.
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Figure 7.6: Identification performance using footprint-based features by means of (a) Re-
ceiver Operating Characteristics for the prepaid scenario (b) rank probability
mass functions for the pay-per-entry scenario.

when compared to hand biometrics, is even worse than for other algorithms. This might
be caused by (a) more accurate preprocessing by means of Contrast-Limited Adaptive
Histogram Equalisation in case of fingerprints and (b) the missing fusion part, which
further increases the accuracy of the minutiae feature. Genuine matching scores returned
by bozorth3 are lower than fingerprint acceptance thresholds recommended by NIST [51].
This might be caused by the higher number of minutiae (300−400 per ballprint in contrast
to 40− 100 per fingerprint).

Again, I examine the fusion at matching score and at decision level using the three best
algorithms Shape, Eigenfeet and Minutiae. In the first case using the Weighted Sum Rule,
optimal weights have been identified as 0.05 for Shape, 0.35 for Eigenfeet and 0.60 for Minu-
tiae. This yields a total performance of 0.41% MinHTER at t = 32, which significantly
improves results of single features. In contrast to hand images, also fusion at decision level
using the Majority Vote Rule performs better than each of the single algorithms, namely
at a HTER of 1.32% at the operating point FMR = 1.08% and FNMR = 1.56%.

7.3.2 Identification performance

Within this last experiment, footprints are matched against a member database obtained
from DB2 by enroling the first 16 users with their first acquired impression of the right
foot.

When ROC curves are estimated for Hypotheses (2.6) and (2.7), it is easy to see that
the general ranking of the employed features almost remains the same (see Figure 7.6(a)).
Now, the Minutiae feature performs best, however with a MinHTER of 2.81% it is still
an order of magnitude higher than fingerprint identification. Eigenfeet follows at close
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distance to Minutiae with MinHTER = 3.59%, and finally the Shape feature exhibits the
highest error rate of MinHTER = 12.66%. Using the Weighted Sum Rule with weights 0.19
(Eigenfeet), 0.66 (Minutiae), and 0.15 (Shape), a final fusion result of 0.63%MinHTER
can be achieved.

Recognition rates for rank 1 in case of pay-per-entry scenario evaluation are 96.87% for
Eigenfeet, 98.43% for the Minutiae algorithm and 92.19% for the Shape feature, as can
be seen in Figure 7.6(b). Thus, using high-resolved plantar footprint images can further
increase existing recognition rates presented in Chapter 2.

7.4 Discussion

The following results have been obtained with respect to the questions addressed by the
experimental section:

1. Result 1: Concerning the comparison of hand-based features in a single-sensor en-
vironment, the best observed overall recognition accuracy is 3 ·10−3% MinHTER for
the Weighted Sum Rule fusion of Palmprint, Eigenpalms + Eigenfingers and Minu-
tiae. Generally, textural features perform better than geometrical features. Three
classes can be identified: a high-performance class (Minutiae, Eigenpalms + Eigen-
fingers) at approximately 1% MinHTER, a mid-range class (Palmprint, Shape) with
approximately 5% MinHTER and a low-performance class (Geometry, Silhouette)
with approximately 9% MinHTER.

2. Result 2: The best performance for footprints is provided by the Weighted Sum
Rule of Shape, Eigenfeet and Minutiae with 0.41% MinHTER. When applying hand-
based biometric features to footprints, several modifications are necessary, some of
which reduce the feature space drastically. The employed experiments report match-
ing performance degenerations by factors larger than 2 for almost every algorithm
(except the Shape feature). Reasons for the degradation in performance include: (a)
additional fusion of individual finger scores in hand images, e.g. for the Silhouette,
Shape, Eigenpalms + Eigenfingers and Minutiae feature, (b) missing typical prin-
cipal lines in feet for the Soleprint feature, (c) more difficult extraction of intra-toe
valleys for the Toelength feature. Results show that matching performance is split
into two classes: in the case of the better performing algorithms Shape, Eigenfeet
and Minutiae MinHTERs of approximately 2 − 6% are achieved, while Silhouette,
Soleprint and Toelength show MinHTERs of 20− 30%.

3. Result 3: Even though the Minutiae algorithm requires high resolution input and
therefore causes long scanning durations, its performance justifies the incorporation
of this feature into multibiometric hand-based systems. But, when throughput is
the main design criterion for applications, Eigenpalms + Eigenfingers provide a
reasonable alternative reducing the required resolution by a factor of 5 (input fingers
are processed at 100 dpi, palm regions are processed at a resolution depending on
the actual size of the palm, but usually less than 100 dpi). This also results in
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a potentially 6 times faster acquisition speed (see Chapter 3) with respect to the
employed flatbed scanner model HP Scanjet 3500c. While in case of hands, the high-
resolution Minutiae feature exhibits error rates, which are an order of magnitude
smaller (0.12% instead of 1.18% MinHTER) than for Eigenpalms + Eigenfingers,
this situation is different for footprints. Here, Eigenfeet and Minutiae perform nearly
equally well with 2−3% MinHTER. Thus, the Eigenfeet algorithm is the best choice
for low resolution input.

4. Result 4: Assessing the behaviour of the introduced algorithms in a small-scale
prepaid-scenario involving a database size of 16 footprints and 43 hands, the over-
all performance (using a Weighted Sum Rule) is 0% MinHTER for hands and
0.63% MinHTER for footprints. While each of the three best algorithms for hands
(Palmprint, Eigenpalms + Eigenfingers, Minutiae) and feet (Shape, Eigenfeet, Minu-
tiae) could contribute to the overall fusion result, considered as single features,
only the eigenspace-based algorithms Eigenpalms + Eigenfingers, Eigenfeet and the
minutiae-based matcher are suitable for identification, with MinHTER values less
than 10%. The evaluation of pay-per-entry-scenarios estimating rank 1 of the rank
probability mass function confirmed this result: results larger than 95% are only
provided by the latter two algorithms.

5. Result 5: The Max Rule performs best for combining individual fingerprint scores
in the implemented single-sensor multibiometric system using discrete scores for
matching. Exhibiting a MinHTER of 0.12% in verification mode, it is closely followed
by the Sum Rule (0.17%) and (modified) Product Rule (0.22%). Results for single
fingers are in the range of approximately 1 − 8% MinHTER. All employed fusion
strategies could improve recognition accuracy.

7.4.1 A note on statistical significance

When error rates for biometric systems are estimated, their statistical significance is an
important issue. This refers to the confidence that an examined error rate is not subject to
change. Particularly when extremely low error rates are reported for small training sets,
such as in the employed work, an analysis of statistical significance is important before
assumptions about general behaviour are made. At this point, I want to note that the
author of this thesis is aware of the fact that further analysis and more test data are neces-
sary in order to obtain confidence that examined rates continue to remain stable for larger
data sets. However, this work is a first attempt to evaluate high-resolution foot biometrics
and single-sensor multimodal hand biometrics based on commercially available flatbed
scanners. Thus, it examines general behaviour without claiming to provide a specific con-
fidence interval for the observed error rates. Nevertheless, two rules are introduced which
are employed in literature for a simple (optimistic) estimation of statistical significance
introducing lower bounds.

The expressiveness with respect to statistical significance of the number n of (independent
identically distributed) comparisons provided by test set can be estimated by the so-called
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Rule of 3 [22]: according to this rule, if no errors within the tests set occur, an error rate
of p = 3

n
can be said with 95% confidence. Applied to the employed set DB1 of hands in

the verification experiment, if no errors occur, an FNMR of 0.3% and FMR of 3 · 10−3% is
in the 95% confidence interval. For the footprint test set DB2, only an FNMR of 0.94%
and FMR of 0.02% is in the 95% confidence interval in case of no reported errors, since it
exhibits fewer genuine and imposter matches.

For single reported error rates on the test set, Doddington’s Rule of 30 may be applied
[22], demanding the occurrence of at least 30 errors within the test set to be 90% confident
that reported error rates do not vary by ±30% of their value.
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8 Summary

I examined a single-sensor approach for multimodal hand and footprint-based biomet-
ric recognition and evaluated implemented prototypes for both hand and footprint-based
biometric systems operating in verification and identification mode. For each of the two
systems, six geometric and texture-based algorithms, namely Silhouette, Shape, Finger-
length/Toelength, Palmprint/Soleprint, Eigenpalms + Eigenfingers/Eigenfeet and Minu-
tiae were compared in terms of resource needs and accuracy. For experimental evaluation,
a custom database of 443 right-hand images and 160 right-foot samples was collected. A
simple HP Scanjet 3500c flatbed scanner was used to capture a high-resolution 500− 600
dpi 8-bit grey-scale palmar image of the body part.

Regarding image normalisation and alignment, due to the high resolution of input im-
ages, an extraction of finger peaks and valleys using state-of-the-art extraction with radial
distance functions yielded unsatisfactory results. This problem was addressed by the in-
troduction of salient point refinement using best-fitting-ellipse matching for individual
fingers and intersection of their major axis with the contour for peaks and calculation
of the intra-finger angle bisector approximating finger boundaries using least-squares for
valleys. A novel refinement method to find intra-toe valleys was proposed as well.

Considering the overall performance in verification mode with respect to the employed data
sets, footprint-based multimodal recognition exhibited a MinHTER of 0.41%, whereas
the best fusion algorithm for hands yielded 3 · 10−3%. Despite the higher error rates
of footprints, in case of classifier combination, the performance of unimodal hand-based
systems could still be reached. The employed Minutiae feature performed best for hands
yielding 0.12% MinHTER, followed by Eigenpalms + Eigenfingers (1.18%), Palmprint
(3.7%), Shape (4.71%), Fingerlength (8.12%), and Silhouette (8.77%). For footprints a
ranking of individual features resulted in: Eigenfeet (2.21%), followed by Minutiae (2.67%),
Shape (5.72%), Soleprint (19.21%), Toelength (23.56%), and Silhouette (25.94%).

For the identification experiment, the three best algorithms were further investigated. In
the case of a pay-per-entry scenario, only Minutiae-based and Eigenpalms + Eigenfingers/
Eigenfeet-based recognition proved to be suitable for this task, with recognition rates of
97−98% for footprints (with respect to a database of 16 enroled members) and 99−100%
for hands (with 43 enroled members). Regarding the less restrictive prepaid scenario using
the same database, fusion of all three algorithms at matching score using the Weighted
Sum Rule yielded no errors in case of hands and 0.63% MinHTER in case of feet.

Finally, when compared to unimodal systems, multimodal fusion of hand-based modalities
could increase recognition accuracy significantly. Also an image-based approach applied to
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8 Summary

footprints outperformed existing approaches for comparable database size. Commercially
available flatbed scanners were shown to provide good results when used as biometric input
sensors. Whilst for traditional access control, hand-based solutions provided more accurate
results, the use of foot biometrics in spas or public baths, i.e. areas where footprints may
be captured without the need to take off shoes or socks, could be encouraged. For concrete
applications targeting this new modality, further topics of interest include a performance
evaluation under more realistic conditions, such as (a) underwater capture, (b) larger time
lapses between recordings and (c) camera-based instant acquisition to increase transaction
times. Regarding the investigations of multimodal fusion of hand-based modalities, where
competitive error rates could be observed, future work should especially concentrate on
statistical significance analysis using a larger training set size in order to justify low error
rates.
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